Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 33(36): 9211-9221, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28819979

RESUMEN

The stratum corneum (SC) is the outermost layer of the skin and is composed of a multilayered assembly of mostly ceramids (Cer), free fatty acids, cholesterol (Chol), and cholesterol sulfate (Chol-S). Because of the tight packing of these lipids, the SC features unique barrier properties defending the skin from environmental influences. Under pathological conditions, where the skin barrier function is compromised, topical application of molecules that rigidify the SC may lead to a restored barrier function. To this end, molecules are required that incorporate into the SC and bring back the original rigidity of the skin barrier. Here, we investigated the influence of a novel dimeric ceramide (dim-Cer) molecule designed to feature a long, rigid hydrocarbon chain ideally suited to forming an orthorhombic lipid phase. The influence of this molecules on the thermotropic phase behavior of a SC mixture consisting of Cer[AP18] (55 wt %), cholesterol (Chol, 25 wt %), steric acid (SA, 15 wt %), and cholesterol sulfate (Chol-S, 5 wt %) was studied using a combination of neutron diffraction and 2H NMR spectroscopy. These methods provide detailed insights into the packing properties of the lipids in the SC model mixture. Dim-Cer remains in an all-trans state of the membrane-spanning lipid chain at all investigated temperatures, but the influence on the phase behavior of the other lipids in the mixture is marginal. Biophysical experiments are complemented by permeability measurements in model membranes and human skin. The latter, however, indicates that dim-Cer only partially provides the desired effect on membrane permeability, necessitating further optimization of its structure for medical applications.

2.
Soft Matter ; 13(10): 2107-2119, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28225091

RESUMEN

The stratum corneum is the outermost layer of the skin and protects the organism against external influences as well as water loss. It consists of corneocytes embedded in a mixture of ceramides, fatty acids, and cholesterol in a molar ratio of roughly 1 : 1 : 1. The unique structural and compositional arrangement of these stratum corneum lipids is responsible for the skin barrier properties. Many studies investigated the organization of these barrier lipids and, in particular, the exact conformation of ceramides. However, so far no consensus has been reached. In this study, we investigate a model system comprised of N-(non-hydroxy-tetracosanoyl)-phytosphingosine/cholesterol/tetracosanoic acid (CER[NP]-C24/CHOL/TA) at a 1 : 1 : 1 molar ratio using neutron diffraction and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Deuterated variants of all three lipid components of the model system were used to enable their separate investigation in the NMR spectra and quantification of the amount of molecules in each phase. Neutron scattering experiments show the coexistence of two lipid phases at low temperatures with repeat spacings of 54.2 Å and 43.0 Å at a physiological skin temperature of 32 °C. They appear to be indistinguishable in the 2H NMR spectra as both phases are crystalline and ceramide molecules do not rotate around their long axis on a microsecond timescale. The evolution of these phases upon heating is followed and with increasing temperature fluid and even isotropically mobile molecules are observed. A model of the organization of the lamellar phases is proposed in which the thicker phase consists of CER[NP]-C24 in a hairpin conformation mixed with CHOL and TA, while the phase with a repeat spacing of 43.0 Å contains CER[NP]-C24 in a V-shape conformation.

3.
Biochim Biophys Acta Biomembr ; 1859(5): 745-755, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28132900

RESUMEN

The stratum corneum (SC) provides the main barrier properties in native skin. The barrier function is attributed to the intercellular lipids, forming continuous multilamellar membranes. In this study, SC lipid membranes in model ratios were enriched with deuterated lipids in order to investigate structural and dynamical properties by neutron diffraction and 2H solid-state NMR spectroscopy. Further, the effect of the penetration enhancer isopropyl myristate (IPM) on the structure of a well-known SC lipid model membrane containing synthetically derived methyl-branched ceramide [EOS], ceramide [AP], behenic acid and cholesterol (23/10/33/33wt%) was investigated. IPM supported the formation of a single short-periodicity phase (SPP), in which we determined the molecular organization of CER[AP] and CER[EOS]-br for the first time. Furthermore, the thermotropic phase behavior of the lipid system was analyzed by additional neutron diffraction studies as well as by 2H solid-state NMR spectroscopy, covering temperatures of 32°C (physiological skin temperature), 50°C, and 70°C with a subsequent cooldown back to skin temperature. Both techniques revealed a phase transition and a hysteresis effect. During the cooldown, Bragg peaks corresponding to a long-periodicity phase (LPP) appeared. Additionally, 2H NMR revealed that the IPM molecules are isotopic mobile at all temperatures.


Asunto(s)
Epidermis/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Miristatos/farmacología , Difracción de Neutrones/métodos , Ceramidas/química , Transición de Fase , Temperatura Cutánea
4.
Langmuir ; 32(8): 2023-31, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26828109

RESUMEN

The thermoptropic phase behaviors of two stratum corneum model lipid mixtures composed of equimolar contributions of either Cer[NS18] or Cer[NP18] with stearic acid and cholesterol were compared. Each component of the mixture was specifically deuterated such that the temperature-dependent (2)H NMR spectra allowed disentanglement of the complicated phase polymorphism of these lipid mixtures. While Cer[NS] is based on the sphingosine backbone, Cer[NP] features a phytosphingosine, which introduces an additional hydroxyl group into the headgroup of the ceramide and abolishes the double bond. From the NMR spectra, the individual contributions of all lipids to the respective phases could be determined. The comparison of the two lipid mixtures reveals that Cer[NP] containing mixtures have a tendency to form more fluid phases. It is concluded that the additional hydroxyl group of the phytosphingosine-containing ceramide Cer[NP18] in mixture with chain-matched stearic acid and cholesterol creates a packing defect that destabilizes the orthorhombic phase state of canonical SC mixtures. This steric clash favors the gel phase and promotes formation of fluid phases of Cer[NP] containing lipid mixtures at lower temperature compared to those containing Cer[NS18].


Asunto(s)
Ceramidas/química , Sustancias Macromoleculares/química , Colesterol/química , Deuterio , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Compuestos Organofosforados , Espectroscopía de Protones por Resonancia Magnética , Esfingosina/análogos & derivados , Ácidos Esteáricos/química , Temperatura , Triazoles
5.
Langmuir ; 31(17): 4906-15, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25870928

RESUMEN

We investigated equimolar mixtures of ceramides with lignoceric acid and cholesterol as models for the human stratum corneum by differential scanning calorimetry and (2)H solid-state NMR spectroscopy. Our reference system consisted of lignoceroyl sphingosine (Cer[NS24]), which represents one of the ceramides in the human stratum corneum. Furthermore, the effect of ceramide acyl chain truncation to 16 carbons as in Cer[NS16] and the loss of the C4 trans double bond as in dihydroceramide Cer[NDS24] were studied. Fully relaxed (2)H NMR spectra were acquired for each deuterated component of each mixture separately, allowing the quantitative determination of the individual lipid phases. At skin temperature, the reference system containing Cer[NS24] is characterized by large portions of each component of the mixture in a crystalline phase, which largely restricts the permeability of the skin lipid barrier. The loss of the C4 trans double bond in Cer[NDS24] leads to the replacement of more than 25% of the crystalline phase by an isotropic phase of the dihydroceramide that shows the importance of dihydroceramide desaturation in the formation of the skin lipid barrier. The truncated Cer[NS16] is mostly found in the gel phase at skin temperature, which may explain its negative effect on the transepidermal water loss in atopic dermatitis patients. These significant alterations in the phase behavior of all lipids are further reflected at elevated temperatures. The molecular insights of our study may help us to understand the importance of the structural parameters of ceramides in healthy and compromised skin barriers.


Asunto(s)
Ceramidas/química , Colesterol/química , Ácidos Grasos/química , Deuterio , Epidermis/química , Humanos , Espectroscopía de Resonancia Magnética/métodos , Modelos Biológicos , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...