RESUMEN
We demonstrate enhanced Li+ transport through the selectively solvated ionic layers of a single-ion conducting polymer. The polymer is a precisely segmented ion-containing multiblock copolymers with well-defined Li+SO3- ionic layers between crystallized linear aliphatic 18-carbon blocks. X-ray scattering reveals that the dimethyl sulfoxide (DMSO) molecules selectively solvate the ionic layers without disrupting the crystallization of the polymer backbone. The amount of DMSO (â¼21 wt %) calculated from the increased layer spacing is consistent with thermogravimetric analysis. The ionic conductivity through DMSO-solvated ionic layers is >104 times higher than in the dried state, indicating a significant enhancement of ion transport in the presence of this solvent. Dielectric relaxation spectroscopy (DRS) further elucidates the role of the structural relaxation time (τ) and the number of free Li+ (n) on the ionic conductivity (σ). Specifically, DRS reveals that the solvation of ionic domains with DMSO contributes to both accelerating the structural relaxation and the dissociation of ion pairs. This study is the initial demonstration that selective solvation is a viable design strategy to improve ionic conductivity in nanophase separated, single-ion conducting multiblock copolymers.
RESUMEN
We demonstrate that ionic functionality in a multiblock architecture produces highly ordered and sub-3 nm nanostructures in thin films, including bicontinuous double gyroids. At 40 °C, precise ion-containing multiblock copolymers of poly(ethylene-b-lithium sulfosuccinate ester) n (PESxLi, x = 12 or 18) exhibit layered ionic assemblies parallel to the substrate. These ionic layers are separated by crystalline polyethylene blocks with the polymer backbones perpendicular to the substrate. Notably, above the melting temperature (T m) of the polyethylene blocks, layered PES18Li thin films transform into a highly oriented double-gyroid morphology with the (211) plane (d 211 = 2.5 nm) aligned parallel to the substrate. The cubic lattice parameter (a gyr) of the double gyroid is 6.1 nm. Upon heating further above T m, the double-gyroid morphology in PES18Li transitions into hexagonally packed cylinders with cylinders parallel to the substrate. These layered, double-gyroid, and cylinder nanostructures form epitaxially and spontaneously without secondary treatment, such as interfacial layers and solvent vapor annealing. When the film thickness is less than â¼3a gyr, double gyroids and cylinders coexist due to the increased confinement. For PES12Li above T m, the layered ionic assemblies simply transform into disordered morphology. Given the chemical tunability of ion-functionalized multiblock copolymers, this study reveals a versatile pathway to fabricating ordered nanostructures in thin films.
RESUMEN
We investigated the temperature-dependent phase behavior and interaction parameter of polyethylene-based multiblock copolymers with pendant ionic groups. These step-growth polymers contain short polyester blocks with a single Li+SO3- group strictly alternating with polyethylene blocks of x-carbons (PESxLi, x = 12, 18, 23). At room temperature, these polymers exhibit layered morphologies with semicrystalline polyethylene blocks. Upon heating above the melting point (â¼130 °C), PES18Li shows two order-to-order transitions involving Ia3Ì d gyroid and hexagonal morphologies. For PES12Li, an order-to-disorder transition accompanies the melting of the polyethylene blocks. Notably, a Flory-Huggins interaction parameter was determined from the disordered morphologies of PES12Li using mean-field theory: χ(T) = 77.4/T + 2.95 (T in Kelvin) and χ(25 °C) ≈ 3.21. This ultrahigh χ indicates that the polar ionic and nonpolar polyethylene segments are highly incompatible and affords well-ordered morphologies even when the combined length of the alternating blocks is just 18-29 backbone atoms. This combination of ultrahigh χ and short multiblocks produces sub-3-nm domain spacings that facilitate the control of block copolymer self-assembly for various fields of study, including nanopatterning.
RESUMEN
Polymers bearing phosphonic acid groups have been proposed as anhydrous proton-conducting membranes at elevated operating temperatures for applications in fuel cells. However, the synthesis of phosphonated polymers and the control over the nanostructure of such polymers is challenging. Here, we report the straightforward synthesis of phosphonic acid-terminated, long-chain aliphatic materials with precisely 26 and 48 carbon atoms (C26PA2 and C48PA2). These materials combine the structuring ability of monodisperse polyethylenes with the ability of phosphonic acid groups to form strong hydrogen-bonding networks. Anhydride formation is absent so that charge carrier loss by a condensation reaction is avoided even at elevated temperatures. Below the melting temperature (Tm), both materials exhibit a crystalline polyethylene backbone and a layered morphology with planar phosphonic acid aggregates separated by 29 and 55 Å for C26PA2 and C48PA2, respectively. Above Tm, the amorphous polyethylene (PE) segments coexist with the layered aggregates. This phenomenon is especially pronounced for the C26PA2 and is identified as a thermotropic smectic liquid crystalline phase. Under these conditions, an extraordinarily high correlation length (940 Å) along the layer normal is observed, demonstrating the strength of the hydrogen bond network formed by the phosphonic acid groups. The proton conductivity in both materials in the absence of water reaches 10-4 S/cm at 150 °C. These new precise phosphonic acid-based materials illustrate the importance of controlling the chemistry to form self-assembled nanoscale aggregates that facilitate rapid proton conductivity.
RESUMEN
We present the coordination-driven self-assembly of three tetranuclear metallacycles containing intracyclic NH2, OH, or OMe functionalities through the combination of various isophthalic acid building blocks with a divinylphenylene diruthenium complex. All new complexes of this study were characterized by means of nuclear magnetic resonance spectroscopy, ultrahigh-resolution ESI mass spectrometry, cyclic and square wave voltammetry and, in two cases, X-ray diffraction. The hydroxy functionalized macrocycle 4-BOH and the corresponding half-cycle 2-OH stand out, as their intracyclic OH···O hydrogen bonds stabilize their mixed-valent one- (2-OH, 4-BOH) and three-electron-oxidized states (4-BOH). Despite sizable redox splittings between all one-electron waves, the mixed-valent monocations and trications do not exhibit any intervalence charge-transfer band, assignable to through-bond electronic coupling, but nevertheless display distinct IR band shifts of their charge-sensitive Ru(CO) tags. We ascribe these seemingly contradicting observations to a redox-induced shuffling of the OH···O hydrogen bond(s) to the remaining, more electron-rich, reduced redox site.
RESUMEN
Microcarriers with the ability to release and catch substances are highly desired metamaterials and difficult to obtain. Herein, we report a straightforward strategy to synthesize these materials by combining silica-biomorphs with mesocrystals. An easy access to microcarrier hulls with covalently bound spiropyrans as light-switchable anchor points is presented.
Asunto(s)
Materiales Biomiméticos/química , Luz , Piranos/química , Dióxido de Silicio/química , Compuestos de Espiro/química , Materiales Biomiméticos/síntesis química , Fenómenos Magnéticos , Estructura Molecular , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
The preparation of polymer nanoparticles with a uniform size and shape, beyond spheres, is an unresolved problem. Here we report a living aqueous catalytic polymerization, resulting in particles grown by a single active site and composed of a single ultra high molecular weight polyethylene (UHMWPE) chain. The control on a molecular level (Mw/Mn = 1.1-1.2) and at the same time on a particle level (PDI < 0.05) together with the immediate deposition of the growing chain on the growing nanocrystal results in a distinct evolution of the particle morphology over time. These uniform nanocrystals are obtained as concentrated aqueous dispersions of > 10 wt-% (N ≈ 1019 particles L-1) polymer content. Key to this robust procedure to single chain nanoparticles are long-lived water-stable Ni(II) catalysts that do not undergo any chain transfer. These findings are a relevant step towards polymer materials based on nanoparticle assembly.