Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuron ; 89(3): 521-35, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26844832

RESUMEN

The precise connectivity of somatostatin and parvalbumin cortical interneurons is generated during development. An understanding of how these interneuron classes incorporate into cortical circuitry is incomplete but essential to elucidate the roles they play during maturation. Here, we report that somatostatin interneurons in infragranular layers receive dense but transient innervation from thalamocortical afferents during the first postnatal week. During this period, parvalbumin interneurons and pyramidal neurons within the same layers receive weaker thalamocortical inputs, yet are strongly innervated by somatostatin interneurons. Further, upon disruption of the early (but not late) somatostatin interneuron network, the synaptic maturation of thalamocortical inputs onto parvalbumin interneurons is perturbed. These results suggest that infragranular somatostatin interneurons exhibit a transient early synaptic connectivity that is essential for the establishment of thalamic feedforward inhibition mediated by parvalbumin interneurons.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Interneuronas/fisiología , Vías Nerviosas/crecimiento & desarrollo , Parvalbúminas/fisiología , Somatostatina/fisiología , Tálamo/fisiología , Animales , Corteza Cerebral/fisiología , Ratones , Vías Nerviosas/fisiología , Células Piramidales/fisiología , Tálamo/crecimiento & desarrollo
2.
Cell ; 160(3): 503-15, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635458

RESUMEN

Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here, we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs). Targeted removal of RORα INs in the dorsal spinal cord leads to a marked reduction in behavioral responsiveness to light touch without affecting responses to noxious and itch stimuli. RORα IN-deficient mice also display a selective deficit in corrective foot movements. This phenotype, together with our demonstration that the RORα INs are innervated by corticospinal and vestibulospinal projection neurons, argues that the RORα INs direct corrective reflex movements by integrating touch information with descending motor commands from the cortex and cerebellum.


Asunto(s)
Mecanotransducción Celular , Vías Nerviosas , Asta Dorsal de la Médula Espinal/metabolismo , Tacto , Animales , Interneuronas/metabolismo , Ratones , Actividad Motora , Neuronas Motoras/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Asta Dorsal de la Médula Espinal/citología , Sinapsis
3.
PLoS One ; 8(8): e70325, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967072

RESUMEN

The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control.


Asunto(s)
Células del Asta Anterior , Diferenciación Celular , Interneuronas , Médula Espinal/citología , Médula Espinal/fisiología , Animales , Movimiento Celular , Ratones , Ratones Noqueados
4.
Proc Natl Acad Sci U S A ; 110(22): 9106-11, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23671081

RESUMEN

New neurons, which have been implicated in pattern separation, are continually generated in the dentate gyrus in the adult hippocampus. Using a genetically modified rabies virus, we demonstrated that molecular layer perforant pathway (MOPP) cells innervated newborn granule neurons in adult mouse brain. Stimulating the perforant pathway resulted in the activation of MOPP cells before the activation of dentate granule neurons. Moreover, activation of MOPP cells by focal uncaging of glutamate induced strong inhibition of granule cells. Together, these results indicate that MOPP cells located in the molecular layer of the dentate gyrus contribute to feed-forward inhibition of granule cells via perforant pathway activation.


Asunto(s)
Giro Dentado/citología , Interneuronas/metabolismo , Modelos Neurológicos , Neurogénesis/fisiología , Vía Perforante/citología , Animales , Retroalimentación Fisiológica , Inmunohistoquímica , Interneuronas/citología , Ratones , Ratones Transgénicos , Estimulación Luminosa , Virus de la Rabia
5.
Development ; 139(1): 179-90, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22115757

RESUMEN

The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype. We show that the selective activation of the Onecut transcription factors Oc1 and Oc2 during the first wave of V1 interneuron neurogenesis is a key step in the RC differentiation program. The development of RCs is additionally dependent on the forkhead transcription factor Foxd3, which is more broadly expressed in postmitotic V1 interneurons. Our demonstration that RCs are born, and activate Oc1 and Oc2 expression, in a narrow temporal window leads us to posit that neuronal diversity in the developing spinal cord is established by the composite actions of early spatial and temporal determinants.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Factor Nuclear 6 del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/citología , Médula Espinal/citología , Médula Espinal/embriología , Factores de Transcripción/metabolismo , Animales , Bromodesoxiuridina , Cruzamientos Genéticos , Electrofisiología , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones , Factores de Tiempo
6.
Curr Opin Neurobiol ; 20(1): 116-25, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20138753

RESUMEN

Neural networks in the hindbrain and spinal cord generate the simple patterns of motor activity that are necessary for breathing and locomotion. These networks function autonomously, producing simple yet flexible rhythmic motor behaviours that are highly responsive to sensory inputs and central control. This review outlines recent advances in our understanding of the genetic programmes controlling the assembly and functioning of circuits in the hindbrain and spinal cord that are responsible for respiration and locomotion. In addition, we highlight the influence that target-derived retrograde signaling and experience-dependent mechanisms have on establishing connectivity, particularly with respect to sensory afferent innervation of the spinal cord.


Asunto(s)
Actividad Motora/genética , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Rombencéfalo/fisiología , Médula Espinal/fisiología , Animales , Vías Nerviosas/fisiología , Periodicidad , Respiración/genética , Transducción de Señal/genética
7.
J Neurosci ; 29(49): 15542-50, 2009 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-20007478

RESUMEN

Successful regeneration of damaged neurons depends on the coordinated expression of neuron-intrinsic genes. At present however, there is no comprehensive view of the transcriptional regulatory mechanisms underlying neuronal regeneration. We used high-content cellular screening to investigate the functional contribution of 62 transcription factors to regenerative neuron outgrowth. Ten transcription factors are identified that either increase or decrease neurite outgrowth. One of these, NFIL3, is specifically upregulated during successful regeneration in vivo. Paradoxically however, knockdown of NFIL3 and overexpression of dominant-negative NFIL3 both increase neurite outgrowth. Our data show that NFIL3, together with CREB, forms an incoherent feedforward transcriptional regulatory loop in which NFIL3 acts as a negative regulator of CREB-induced regeneration-associated genes.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Transcripción Genética/fisiología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Línea Celular , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Ganglios Espinales/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Neuritas/fisiología , Neuronas/fisiología , Ratas , Ratas Wistar , Transcripción Genética/genética
8.
Eur J Neurosci ; 25(12): 3629-37, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17610582

RESUMEN

Successful regeneration of injured neurons requires a complex molecular response that involves the expression, modification and transport of a large number of proteins. The identity of neuronal proteins responsible for the initiation of regenerative neurite outgrowth is largely unknown. Dorsal root ganglion (DRG) neurons display robust and successful regeneration following lesion of their peripheral neurite, whereas outgrowth of central neurites is weak and does not lead to functional recovery. We have utilized this differential response to gain insight in the early transcriptional events associated with successful regeneration. Surprisingly, our study shows that peripheral and central nerve crushes elicit very distinct transcriptional activation, revealing a large set of novel genes that are differentially regulated within the first 24 h after the lesion. Here we show that Ankrd1, a gene known to act as a transcriptional modulator, is involved in neurite outgrowth of a DRG neuron-derived cell line as well as in cultured adult DRG neurons. This gene, and others identified in this study, may be part of the transcriptional regulatory module that orchestrates the onset of successful regeneration.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Regeneración Nerviosa/fisiología , Neuropatía Ciática/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Femenino , Ganglios Espinales/patología , Perfilación de la Expresión Génica/métodos , Hibridación in Situ/métodos , Masculino , Proteínas Musculares , Neuronas/metabolismo , Proteínas Nucleares , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Proteínas Represoras , Neuropatía Ciática/patología , Traumatismos de la Médula Espinal/patología , Transfección
9.
Mol Cell Neurosci ; 32(1-2): 102-17, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16677822

RESUMEN

Neuromuscular synapses differ markedly in their plasticity. Motor nerve terminals innervating slow muscle fibers sprout vigorously following synaptic blockage, while those innervating fast-fatigable muscle fibers fail to exhibit any sprouting. Here, we show that the axon repellent Semaphorin 3A is differentially expressed in terminal Schwann cells (TSCs) on different populations of muscle fibers: postnatal, regenerative and paralysis induced remodeling of neuromuscular connections is accompanied by increased expression of Sema3A selectively in TSCs on fast-fatigable muscle fibers. To our knowledge, this is the first demonstration of a molecular difference between TSCs on neuromuscular junctions of different subtypes of muscle fibers. Interestingly, also in a mouse model for amyotrophic lateral sclerosis (ALS), Sema3A is expressed at NMJs of fast-fatigable muscle fibers. We propose that expression of Sema3A by TSCs not only suppresses nerve terminal plasticity at specific neuromuscular synapses, but may also contribute to their early and selective loss in the motor neuron disease ALS.


Asunto(s)
Enfermedad de la Neurona Motora/metabolismo , Unión Neuromuscular/metabolismo , Plasticidad Neuronal/genética , Células de Schwann/metabolismo , Semaforina-3A/metabolismo , Animales , Supervivencia Celular/genética , Desnervación , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/fisiopatología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Unión Neuromuscular/genética , Unión Neuromuscular/fisiopatología , Ratas , Ratas Wistar , Neuropatía Ciática/genética , Neuropatía Ciática/metabolismo , Neuropatía Ciática/fisiopatología , Semaforina-3A/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
10.
Mol Cell Proteomics ; 4(2): 120-32, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15509515

RESUMEN

Using proteomics, we investigated the temporal expression profiles of proteins in rat sciatic nerve after experimental crush. Extracts of sciatic nerves collected at 5, 10, and 35 days after injury were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. Of the approximately 1,500 protein spots resolved on each gel, 121 showed significant regulation during at least one time point. Using cluster analysis, these proteins were grouped into two expression profiles of down-regulation and four of up-regulation. These profiles mainly reflected differences in cellular origins in addition to different functional roles. Mass spectrometric analysis identified 82 proteins pertaining to several functional classes, i.e. acute-phase proteins, antioxidant proteins, and proteins involved in protein synthesis/maturation/degradation, cytoskeletal (re)organization, and in lipid metabolism. Several proteins not previously implicated in nerve regeneration were identified, e.g. translationally controlled tumor protein, annexin A9/31, vitamin D-binding protein, alpha-crystallin B, alpha-synuclein, dimethylargininases, and reticulocalbin. Real-time PCR analysis of selected genes showed which were expressed in the nerve versus the dorsal root ganglion neurons. In conclusion, this study highlights the complexity and temporal aspect of the molecular process underlying nerve regeneration and points to the importance of glial and inflammatory determinants.


Asunto(s)
Proteómica/métodos , Regeneración , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Animales , Secuencia de Bases , Análisis por Conglomerados , Citoesqueleto/metabolismo , Cartilla de ADN/química , ADN Complementario/metabolismo , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Inflamación , Masculino , Espectrometría de Masas , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ARN/química , ARN/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Factores de Tiempo , Regulación hacia Arriba , Cicatrización de Heridas
11.
Brain Res Mol Brain Res ; 116(1-2): 17-26, 2003 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-12941457

RESUMEN

The hippocampus is an important target for glucocorticoid hormones. Glucocorticoid receptor (GR) mediated feedback in this area is important for control of behavioural adaptation. An alternative splice variant, the GRbeta (GRbeta) isoform, does not bind ligand and has been proposed to inhibit classic GRalpha-mediated transactivation of target genes. Hence, an increased ratio of GRbeta to GRalpha may induce relative corticosteroid-resistance, as e.g. presumed to occur in major depression. To investigate whether GRbeta is involved in the human hippocampus, we studied GRalpha and GRbeta expression levels in postmortem hippocampal tissue of control subjects by quantitative PCR (Taqman RT-PCR) and immunocytochemistry. Taqman RT-PCR demonstrated a very low relative abundance of GRbeta in the human hippocampus (GRalpha:GRbeta ratio approximately 14,500:1). Immunohistochemical analysis confirmed the occurrence of isolated profiles indeed displaying nuclear staining in the main hippocampal subregions. Subsequent double immunofluorescent analysis revealed that >98% of these GRbeta positive cells were double positive for leucocyte common antigen, that identifies exclusively blood-derived cells of haematopoietic origin, including microglia. We conclude that GRbeta is present in very low amounts in the control human hippocampus, and that of these low numbers of cells, notably, almost all are derived from blood which is inevitably present in postmortem tissue. A functionally relevant role for the GRbeta in control of the human hippocampus is therefore not very likely. Whether this is altered in disease conditions awaits further research.


Asunto(s)
Hipocampo/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Glucocorticoides/metabolismo , Transcripción Genética , Anciano , Northern Blotting , Recuento de Células , Núcleo Celular/genética , Núcleo Celular/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica/métodos , Leucocitos/metabolismo , Hígado/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética , Proteínas Tirosina Fosfatasas/metabolismo , ARN Mensajero/biosíntesis , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Receptores de Superficie Celular/metabolismo , Receptores de Glucocorticoides/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Polimerasa Taq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA