Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580329

RESUMEN

BACKGROUND: Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS: We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRß (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS: The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS: In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Niño , Linfocitos T CD8-positivos , Sistemas CRISPR-Cas/genética , Sangre Fetal , Receptores de Antígenos de Linfocitos T/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Línea Celular Tumoral , Recurrencia
2.
Hemasphere ; 8(2): e45, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435427

RESUMEN

Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.

3.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686014

RESUMEN

In acute lymphoblastic leukemia (ALL), chromosomal translocations involving the KMT2A gene represent highly unfavorable prognostic factors and most commonly occur in patients less than 1 year of age. Rearrangements of the KMT2A gene drive epigenetic changes that lead to aberrant gene expression profiles that strongly favor leukemia development. Apart from this genetic lesion, the mutational landscape of KMT2A-rearranged ALL is remarkably silent, providing limited insights for the development of targeted therapy. Consequently, identifying potential therapeutic targets often relies on differential gene expression, yet the inhibition of these genes has rarely translated into successful therapeutic strategies. Therefore, we performed CRISPR-Cas9 knock-out screens to search for genetic dependencies in KMT2A-rearranged ALL. We utilized small-guide RNA libraries directed against the entire human epigenome and kinome in various KMT2A-rearranged ALL, as well as wild-type KMT2A ALL cell line models. This screening approach led to the discovery of the epigenetic regulators ARID4B and MBD3, as well as the receptor kinase BMPR2 as novel molecular vulnerabilities and attractive therapeutic targets in KMT2A-rearranged ALL.


Asunto(s)
Sistemas CRISPR-Cas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Biblioteca de Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Transcripción , Línea Celular , Antígenos de Neoplasias , Proteínas de Neoplasias
4.
Exp Hematol Oncol ; 12(1): 81, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740239

RESUMEN

In KMT2A-rearranged acute lymphoblastic leukemia (ALL), an aggressive malignancy, oncogenic KMT2A-fusion proteins inappropriately recruit DOT1L to promote leukemogenesis, highlighting DOT1L as an attractive therapeutic target. Unfortunately, treatment with the first-in-class DOT1L inhibitor pinometostat eventually leads to non-responsiveness. To understand this we established acquired pinometostat resistance in pediatric KMT2A::AFF1+ B-ALL cells. Interestingly, these cells became mostly independent of DOT1L-mediated H3K79 methylation, but still relied on the physical presence of DOT1L, HOXA9 and the KMT2A::AFF1 fusion. Moreover, these cells selectively lost the epigenetic regulation and expression of various KMT2A-fusion target genes such as PROM1/CD133, while other KMT2A::AFF1 target genes, including HOXA9 and CDK6 remained unaffected. Concomitantly, these pinometostat-resistant cells showed upregulation of several myeloid-associated genes, including CD33 and LILRB4/CD85k. Taken together, this model comprehensively shows the adaptive potential of KMT2A-rearranged ALL cells upon losing dependency on one of its main oncogenic properties.

5.
NAR Cancer ; 4(4): zcac041, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36518527

RESUMEN

A significant proportion of infant B-cell acute lymphoblastic leukemia (B-ALL) patients remains with a dismal prognosis due to yet undetermined mechanisms. We performed a comprehensive multicohort analysis of gene expression, gene fusions, and RNA splicing alterations to uncover molecular signatures potentially linked to the observed poor outcome. We identified 87 fusions with significant allele frequency across patients and shared functional impacts, suggesting common mechanisms across fusions. We further identified a gene expression signature that predicts high risk independently of the gene fusion background and includes the upregulation of the splicing factor SRRM1. Experiments in B-ALL cell lines provided further evidence for the role of SRRM1 on cell survival, proliferation, and invasion. Supplementary analysis revealed that SRRM1 potentially modulates splicing events associated with poor outcomes through protein-protein interactions with other splicing factors. Our findings reveal a potential convergent mechanism of aberrant RNA processing that sustains a malignant phenotype independently of the underlying gene fusion and that could potentially complement current clinical strategies in infant B-ALL.

8.
Cell Rep ; 39(4): 110752, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476984

RESUMEN

High-risk forms of B-acute lymphoblastic leukemia (B-ALL) remain a therapeutic challenge. Leukemia-initiating cells (LICs) self-renew and spark relapse and therefore have been the subject of intensive investigation; however, the properties of LICs in high-risk B-ALL are not well understood. Here, we use single-cell transcriptomics and quantitative xenotransplantation to understand LICs in MLL-rearranged (MLL-r) B-ALL. Compared with reported LIC frequencies in acute myeloid leukemia (AML), engraftable LICs in MLL-r B-ALL are abundant. Although we find that multipotent, self-renewing LICs are enriched among phenotypically undifferentiated B-ALL cells, LICs with the capacity to replenish the leukemic cellular diversity can emerge from more mature fractions. While inhibiting oxidative phosphorylation blunts blast proliferation, this intervention promotes LIC emergence. Conversely, inhibiting hypoxia and glycolysis impairs MLL-r B-ALL LICs, providing a therapeutic benefit in xenotransplantation systems. These findings provide insight into the aggressive nature of MLL-r B-ALL and provide a rationale for therapeutic targeting of hypoxia and glycolysis.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Glucólisis , Humanos , Hipoxia , Leucemia Mieloide Aguda/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
9.
Biomedicines ; 10(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35327440

RESUMEN

KMT2A-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year of age) represents an aggressive type of childhood leukemia characterized by a poor clinical outcome with a survival chance of <50%. Implementing novel therapeutic approaches for these patients is a slow-paced and costly process. Here, we utilized a drug-repurposing strategy to identify potent drugs that could expeditiously be translated into clinical applications. We performed high-throughput screens of various drug libraries, comprising 4191 different (mostly FDA-approved) compounds in primary KMT2A-rearranged infant ALL patient samples (n = 2). The most effective drugs were then tested on non-leukemic whole bone marrow samples (n = 2) to select drugs with a favorable therapeutic index for bone marrow toxicity. The identified agents frequently belonged to several recurrent drug classes, including BCL-2, histone deacetylase, topoisomerase, microtubule, and MDM2/p53 inhibitors, as well as cardiac glycosides and corticosteroids. The in vitro efficacy of these drug classes was successfully validated in additional primary KMT2A-rearranged infant ALL samples (n = 7) and KMT2A-rearranged ALL cell line models (n = 5). Based on literature studies, most of the identified drugs remarkably appeared to lead to activation of p53 signaling. In line with this notion, subsequent experiments showed that forced expression of wild-type p53 in KMT2A-rearranged ALL cells rapidly led to apoptosis induction. We conclude that KMT2A-rearranged infant ALL cells are vulnerable to p53 activation, and that drug-induced p53 activation may represent an essential condition for successful treatment results. Moreover, the present study provides an attractive collection of approved drugs that are highly effective against KMT2A-rearranged infant ALL cells while showing far less toxicity towards non-leukemic bone marrow, urging further (pre)clinical testing.

10.
Leukemia ; 36(1): 58-67, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34304246

RESUMEN

Infants with MLL-rearranged infant acute lymphoblastic leukemia (MLL-r iALL) undergo intense therapy to counter a highly aggressive malignancy with survival rates of only 30-40%. The majority of patients initially show therapy response, but in two-thirds of cases the leukemia returns, typically during treatment. The glucocorticoid drug prednisone is established as a major player in the treatment of leukemia and the in vivo response to prednisone monotreatment is currently the best indicator of risk for MLL-r iALL. We used two different single-cell RNA sequencing technologies to analyze the expression of a prednisone-dependent signature, derived from an independent study, in diagnostic bone marrow and peripheral blood biopsies. This allowed us to classify individual leukemic cells as either resistant or sensitive to treatment and show that quantification of these two groups can be used to better predict the occurrence of future relapse in individual patients. This work also sheds light on the nature of the therapy-resistant subpopulation of relapse-initiating cells. Leukemic cells associated with high relapse risk are characterized by basal activation of glucocorticoid response, smaller size, and a quiescent gene expression program with cell stemness properties. These results improve current risk stratification and elucidate leukemic therapy-resistant subpopulations at diagnosis.


Asunto(s)
Biomarcadores de Tumor/genética , Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Recurrencia Local de Neoplasia/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Análisis de la Célula Individual/métodos , Transcriptoma , Adulto , Niño , Preescolar , Femenino , Estudios de Seguimiento , Regulación Leucémica de la Expresión Génica , Humanos , Lactante , Recién Nacido , Masculino , Recurrencia Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
12.
Biomedicines ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201500

RESUMEN

Acute lymphoblastic leukemia (ALL) in infants (<1 year of age) remains one of the most aggressive types of childhood hematologic malignancy. The majority (~80%) of infant ALL cases are characterized by chromosomal translocations involving the MLL (or KMT2A) gene, which confer highly dismal prognoses on current combination chemotherapeutic regimens. Hence, more adequate therapeutic strategies are urgently needed. To expedite clinical transition of potentially effective therapeutics, we here applied a drug repurposing approach by performing in vitro drug screens of (mostly) clinically approved drugs on a variety of human ALL cell line models. Out of 3685 compounds tested, the alkaloid drug Camptothecin (CPT) and its derivatives 10-Hydroxycamtothecin (10-HCPT) and 7-Ethyl-10-hydroxycamtothecin (SN-38: the active metabolite of the drug Irinotecan) appeared most effective at very low nanomolar concentrations in all ALL cell lines, including models of MLL-rearranged ALL (n = 3). Although the observed in vitro anti-leukemic effects of Camptothecin and its derivatives certainly were not specific to MLL-rearranged ALL, we decided to further focus on this highly aggressive type of leukemia. Given that Irinotecan (the pro-drug of SN-38) has been increasingly used for the treatment of various pediatric solid tumors, we specifically chose this agent for further pre-clinical evaluation in pediatric MLL-rearranged ALL. Interestingly, shortly after engraftment, Irinotecan completely blocked leukemia expansion in mouse xenografts of a pediatric MLL-rearranged ALL cell line, as well as in two patient-derived xenograft (PDX) models of MLL-rearranged infant ALL. Also, from a more clinically relevant perspective, Irinotecan monotherapy was able to induce sustainable disease remissions in MLL-rearranged ALL xenotransplanted mice burdened with advanced leukemia. Taken together, our data demonstrate that Irinotecan exerts highly potent anti-leukemia effects against pediatric MLL-rearranged ALL, and likely against other, more favorable subtypes of childhood ALL as well.

13.
Front Oncol ; 11: 631594, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937032

RESUMEN

BACKGROUND: Infants with KMT2A-rearranged B-cell precursor acute lymphoblastic leukemia (ALL) have poor outcomes. There is an urgent need to identify novel agents to improve survival. Proteasome inhibition has emerged as a promising therapeutic strategy for several hematological malignancies. The aim of this study was to determine the preclinical efficacy of the selective proteasome inhibitor carfilzomib, for infants with KMT2A-rearranged ALL. METHODS: Eight infant ALL cell lines were extensively characterized for immunophenotypic and cytogenetic features. In vitro cytotoxicity to carfilzomib was assessed using a modified Alamar Blue assay with cells in logarithmic growth. The Bliss Independence model was applied to determine synergy between carfilzomib and the nine conventional chemotherapeutic agents used to treat infants with ALL. Established xenograft models were used to identify the maximal tolerated dose of carfilzomib and determine in vivo efficacy. RESULTS: Carfilzomib demonstrated low IC50 concentrations within the nanomolar range (6.0-15.8 nm) across the panel of cell lines. Combination drug testing indicated in vitro synergy between carfilzomib and several conventional chemotherapeutic agents including vincristine, daunorubicin, dexamethasone, L-asparaginase, and 4-hydroperoxycyclophosphamide. In vivo assessment did not lead to a survival advantage for either carfilzomib monotherapy, when used to treat both low or high disease burden, or for carfilzomib in combination with multi-agent induction chemotherapy comprising of vincristine, dexamethasone, and L-asparaginase. CONCLUSIONS: Our study highlights that in vitro efficacy does not necessarily translate to benefit in vivo and emphasizes the importance of in vivo validation prior to suggesting an agent for clinical use. Whilst proteasome inhibitors have an important role to play in several hematological malignancies, our findings guard against prioritization of carfilzomib for treatment of KMT2A-rearranged infant ALL in the clinical setting.

14.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33983906

RESUMEN

B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.


Asunto(s)
Reordenamiento Génico de Linfocito B , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Islas de CpG , Metilación de ADN , Epigénesis Genética , Epigenoma , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Humanos , Lactante , Ratones , Ratones Endogámicos NOD , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Mol Cancer Ther ; 20(6): 1161-1172, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33850004

RESUMEN

Neuroblastoma tumors frequently overexpress the anti-apoptotic protein B-cell lymphoma/leukemia 2 (BCL-2). We previously showed that treating BCL-2-dependent neuroblastoma cells with the BCL-2 inhibitor venetoclax results in apoptosis, but unfortunately partial therapy resistance is observed. The current study describes the identification of drugs capable of resensitizing venetoclax-resistant neuroblastoma cells to venetoclax. To examine these effects, venetoclax resistance was induced in BCL-2-dependent neuroblastoma cell lines KCNR and SJNB12 by continuous exposure to high venetoclax concentrations. Non-resistant and venetoclax-resistant neuroblastoma cell lines were exposed to a 209-compound library in the absence and presence of venetoclax to identify compounds that were more effective in the venetoclax-resistant cell lines under venetoclax pressure. Top hits were further validated in combination with venetoclax using BCL-2-dependent neuroblastoma model systems. Overall, high-throughput drug screening identified the MDM2 inhibitor idasanutlin as a promising resensitizing agent for venetoclax-resistant neuroblastoma cell lines. Idasanutlin treatment induced BAX-mediated apoptosis in venetoclax-resistant neuroblastoma cells in the presence of venetoclax, whereas it caused p21-mediated growth arrest in control cells. In vivo combination treatment showed tumor regression and superior efficacy over single-agent therapies in a BCL-2-dependent neuroblastoma cell line xenograft and a patient-derived xenograft. However, xenografts less dependent on BCL-2 were not sensitive to venetoclax-idasanutlin combination therapy. This study demonstrates that idasanutlin can overcome resistance to the BCL-2 inhibitor venetoclax in preclinical neuroblastoma model systems, which supports clinical development of a treatment strategy combining the two therapies.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Neuroblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-mdm2/uso terapéutico , Pirrolidinas/uso terapéutico , para-Aminobenzoatos/uso terapéutico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Proto-Oncogénicas c-mdm2/farmacología , Pirrolidinas/farmacología , para-Aminobenzoatos/farmacología
16.
Transl Oncol ; 14(5): 101048, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33667892

RESUMEN

Pediatric MLL-rearranged acute myeloid leukemia (AML) has a generally unfavorable outcome, primarily due to relapse and drug resistance. To overcome these difficulties, new therapeutic agents are urgently needed. Yet, implementing novel drugs for clinical use is a time-consuming, laborious, costly and high-risk process. Therefore, we applied a drug-repositioning strategy by screening drug libraries, comprised of >4000 compounds that are mostly FDA-approved, in a high-throughput format on primary MLL-rearranged AML cells. Here we identified pyrvinium pamoate (pyrvinium) as a novel candidate drug effective against MLL-rearranged AML, eliminating all cell viability at <1000 nM. Additional screening of identified drug hits on non-leukemic bone marrow samples, resulted in a decrease in cell viability of ∼50% at 1000 nM pyrvinium, suggesting a therapeutic window for targeting leukemic cells specifically. Validation of pyrvinium on an extensive panel of AML cell lines and primary AML samples showed comparable viabilities as the drug screen data, with pyrvinium achieving IC50 values of <80 nM in these samples. Remarkably, pyrvinium also induced cell toxicity in primary MLL-AF10+ AML cells, an MLL-rearrangement associated with a poor outcome. While pyrvinium is able to inhibit the Wnt pathway in other diseases, this unlikely explains the efficacy we observed as ß-catenin was not expressed in the AML cells tested. Rather, we show that pyrvinium co-localized with the mitochondrial stain in cells, and hence may act by inhibiting mitochondrial respiration. Overall, this study shows that pyrvinium is highly effective against MLL-rearranged AML in vitro, and therefore represents a novel potential candidate for further studies in MLL-rearranged AML.

19.
Nat Commun ; 11(1): 2861, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32504042

RESUMEN

Fusion genes are hallmarks of various cancer types and important determinants for diagnosis, prognosis and treatment. Fusion gene partner choice and breakpoint-position promiscuity restricts diagnostic detection, even for known and recurrent configurations. Here, we develop FUDGE (FUsion Detection from Gene Enrichment) to accurately and impartially identify fusions. FUDGE couples target-selected and strand-specific CRISPR-Cas9 activity for fusion gene driver enrichment - without prior knowledge of fusion partner or breakpoint-location - to long read nanopore sequencing with the bioinformatics pipeline NanoFG. FUDGE has flexible target-loci choices and enables multiplexed enrichment for simultaneous analysis of several genes in multiple samples in one sequencing run. We observe on-average 665 fold breakpoint-site enrichment and identify nucleotide resolution fusion breakpoints within 2 days. The assay identifies cancer cell line and tumor sample fusions irrespective of partner gene or breakpoint-position. FUDGE is a rapid and versatile fusion detection assay for diagnostic pan-cancer fusion detection.


Asunto(s)
Sistemas CRISPR-Cas/genética , Fusión Génica , Pruebas Genéticas/métodos , Secuenciación de Nanoporos , Neoplasias/diagnóstico , Línea Celular Tumoral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Neoplasias/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA