Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(4): 1585-1592, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36645348

RESUMEN

Rapid and sustained condensate droplet departure from a surface is key toward achieving high heat-transfer rates in condensation, a physical process critical to a broad range of industrial and societal applications. Despite the progress in enhancing condensation heat transfer through inducing its dropwise mode with hydrophobic materials, sophisticated surface engineering methods that can lead to further enhancement of heat transfer are still highly desirable. Here, by employing a three-dimensional, multiphase computational approach, we present an effective out-of-plane biphilic surface topography, which reveals an unexplored capillarity-driven departure mechanism of condensate droplets. This texture consists of biphilic diverging microcavities wherein a matrix of small hydrophilic spots is placed at their bottom, that is, among the pyramid-shaped, superhydrophobic microtextures forming the cavities. We show that an optimal combination of the hydrophilic spots and the angles of the pyramidal structures can achieve high deformational stretching of the droplets, eventually realizing an impressive "slingshot-like" droplet ejection process from the texture. Such a droplet departure mechanism has the potential to reduce the droplet ejection volume and thus enhance the overall condensation efficiency, compared to coalescence-initiated droplet jumping from other state-of-the-art surfaces. Simulations have shown that optimal pyramid-shaped biphilic microstructures can provoke droplet self-ejection at low volumes, up to 56% lower than superhydrophobic straight pillars, revealing a promising new surface microtexture design strategy toward enhancing the condensation heat-transfer efficiency and water harvesting capabilities.

2.
ACS Nano ; 14(10): 12895-12904, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32806052

RESUMEN

Liquid transport (continuous or segmented) in microfluidic platforms typically requires pumping devices or external fields working collaboratively with special fluid properties to enable fluid motion. Natural liquid adhesion on surfaces deters motion and promotes the possibility of liquid or surface contamination. Despite progress, significant advancements are needed before devices for passive liquid propulsion, without the input of external energy and unwanted contamination, become a reality in applications. Here we present an unexplored and facile approach based on the Laplace pressure imbalance, manifesting itself through targeted track texturing, driving passively droplet motion, while maintaining the limited contact of the Cassie-Baxter state on superhydrophobic surfaces. The track topography resembles out-of-plane, backgammon-board, slowly converging microridges decorated with nanotexturing. This design naturally deforms asymmetrically the menisci formed at the bottom of a droplet contacting such tracks and causes a Laplace pressure imbalance that drives droplet motion. We investigate this effect over a range of opening track angles and develop a model to explain and quantify the underlying mechanism of droplet self-propulsion. We further implement the developed topography for applications relevant to microfluidic platform functionalities. We demonstrate control of the rebound angle of vertically impacting droplets, achieve horizontal self-transport to distances up to 65 times the droplet diameter, show significant uphill motion against gravity, and illustrate a self-driven droplet-merging process.

3.
Langmuir ; 35(14): 4876-4885, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30884239

RESUMEN

It is known that electrified droplets deform and may become unstable when the electric field they are exposed to reaches a certain critical value. These instabilities are accompanied by electric discharges due to the local enhancement of the electric field caused by the deformed droplets. Here we report and highlight an interesting aspect of the behavior of unstable water droplets and discharge generation: by implementing wettability engineering, we can manipulate these discharges. We demonstrate that wettability strongly influences the shape of a droplet that is exposed to an electric field. The difference in shape is directly related to differences in the critical value of the applied electric field at which inception of discharge occurs. Using theoretical models, we can predict and sufficiently support our observations. Thus, by tailoring the wettability of the surface, we can control droplet's behavior from expediting the discharge inception to completely restricting it.

4.
ACS Appl Mater Interfaces ; 10(34): 29127-29135, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30067013

RESUMEN

Enhancing the thermal efficiency of a broad range of condenser devices requires means of achieving sustainable dropwise condensation on metallic surfaces, where heat transfer can be further enhanced, by harvesting the advantage of the sweeping action of vapor flow over the surface, facilitating a reduction in the droplet departure diameter. Here, we present a rationally driven, hierarchical texturing process of copper surfaces, guided by fundamental principles of wettability and coalescence, which achieves controlled droplet departure under vapor flow conditions and thus significantly enhances phase change thermal transport. The desired texture is attained by fabricating an array of 3D laser-structured truncated microcones on the surface, covered with papillae-like nanostructures and a hydrolytically stable, low surface energy self-assembled-monolayer coating. Passive droplet departure on this surface is achieved through progressive coalescence of droplets arising from microcavities formed by the microcone array, resulting in depinning and subsequent departure of the depinned condensate drops through vapor shear. The synergistic combination of vapor shear and the sustained dropwise condensation on the hierarchical copper surface results in a nearly 700% increase in heat transfer coefficients as compared to filmwise condensation from identical, standard unstructured surfaces.

5.
Langmuir ; 33(17): 4250-4259, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28388096

RESUMEN

Separating petroleum hydrocarbons from water is an important problem to address in order to mitigate the disastrous effects of hydrocarbons on aquatic ecosystems. A rational approach to address the problem of marine oil-water separation is to disperse the oil with the aid of surfactants in order to minimize the formation of large slicks at the water surface and to maximize the oil-water interfacial area. Here we investigate the fundamental wetting and transport behavior of such surfactant-stabilized droplets and the flow conditions necessary to perform sieving and separation of these stabilized emulsions. We show that, for water-soluble surfactants, such droplets are completely repelled by a range of materials (intrinsically underwater superoleophobic) due to the detergency effect; therefore, there is no need for surface micro-/nanotexturing or chemical treatment to repel the oil and prevent fouling of the filter. We then simulate and experimentally investigate the effect of emulsion flow rate on the transport and impact behavior of such droplets on rigid meshes to identify the minimum pore opening (w) necessary to filter a droplet with a given diameter (d) in order to minimize the pressure drop across the mesh-and therefore maximize the filtering efficiency, which is strongly dependent on w. We define a range of flow conditions and droplet sizes where minimum droplet deformation is to be expected and therefore find that the condition of w ≈ d is sufficient for efficient separation. With this new understanding, we demonstrate the use of a commercially available filter-without any additional surface engineering or functionalization-to separate oil droplets (d < 100 µm) from a surfactant-stabilized emulsion with a flux of ∼11,000 L m-2 h-1 bar-1. We believe these findings can inform the design of future oil separation materials.

6.
ACS Appl Mater Interfaces ; 9(11): 10233-10242, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28230349

RESUMEN

A heat exchange interface at subzero temperature in a water vapor environment exhibits high probability of frost formation due to freezing condensation, a factor that markedly decreases the heat transfer efficacy due to the considerable thermal resistance of ice. Here we report a novel strategy to delay ice nucleation on these types of solid-water vapor interfaces. With a process-driven mechanism, a self-generated liquid intervening layer immiscible to water is deposited on a textured superhydrophobic surface and acts as a barrier between the water vapor and the solid substrate. This liquid layer imparts remarkable slippery conditions resulting in high mobility of condensing water droplets. A large increase of the ensuing ice coverage time is shown compared to the cases of standard smooth hydrophilic or textured superhydrophobic surfaces. During deicing of these self-impregnating surfaces we show an impressive tendency of ice fragments to skate expediting defrosting. Robustness of such surfaces is also demonstrated by operating them under subcooling for at least 490 h without a marked degradation. This is attributed to the presence of the liquid intervening layer, which protects the substrate from hydrolyzation, enhancing longevity and sustaining heat transfer efficiency.

7.
Sci Rep ; 6: 18875, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26743806

RESUMEN

Maintaining the non-wetting property of textured hydrophobic surfaces is directly related to the preservation of an intervening fluid layer (gaseous or immiscible liquid) between the droplet and substrate; once displaced, it cannot be recovered spontaneously as the fully penetrated Wenzel wetting state is energetically favorable. Here, we identify pathways for the "lifting" of droplets from the surface texture, enabling a complete Wenzel-to-Cassie-Baxter wetting state transition. This is accomplished by the hemiwicking of a transient (limited lifetime due to evaporation) low surface tension (LST) liquid, which is capable of self-assembling as an intervening underlayer, lifting the droplet from its impaled state and facilitating a skating-like behavior. In the skating phase, a critical substrate tilting angle is identified, up to which underlayer and droplet remain coupled exhibiting a pseudo-Cassie-Baxter state. For greater titling angles, the droplet, driven by inertia, detaches itself from the liquid intervening layer and transitions to a traditional Cassie-Baxter wetting state, thereby accelerating and leaving the underlayer behind. A model is also presented that elucidates the mechanism of mobility recovery. Ultimately, this work provides a better understanding of multiphase mass transfer of immiscible LST liquid-water mixtures with respect to establishing facile methods towards retaining intervening layers.

8.
Langmuir ; 31(17): 4807-21, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25346213

RESUMEN

Icing of surfaces is commonplace in nature and technology, affecting everyday life and sometimes causing catastrophic events. Understanding (and counteracting) surface icing brings with it significant scientific challenges that requires interdisciplinary knowledge from diverse scientific fields such as nucleation thermodynamics and heat transfer, fluid dynamics, surface chemistry, and surface nanoengineering. Here we discuss key aspects and findings related to the physics of ice formation on surfaces and show how such knowledge could be employed to rationally develop surfaces with extreme resistance to icing (extraordinary icephobicity). Although superhydrophobic surfaces with micro-, nano-, or (often biomimetic) hierarchical roughnesses have shown in laboratory settings (under certain conditions) excellent repellency and low adhesion to water down to temperatures near or below the freezing point, extreme icephobicity necessitates additional important functionalities. Other approaches, such as lubricant-impregnated surfaces, exhibit both advantages and serious limitations with respect to icing. In all, a clear path toward passive surfaces with extreme resistance to ice formation remains a challenge, but it is one well worth undertaking. Equally important to potential applications is scalable surface manufacturing and the ability of icephobic surfaces to perform reliably and sustainably outside the laboratory under adverse conditions. Surfaces should possess mechanical and chemical stability, and they should be thermally resilient. Such issues and related research directions are also addressed in this article.

9.
Nanoscale ; 6(15): 8710-9, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24947006

RESUMEN

Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically nanostructured, environmentally friendly, metal-based (aluminum) superhydrophobic surfaces, which maintain their performance under severely adverse conditions. Based on their functionality, we superpose selected hydrophobic layers (i.e. self-assembled monolayers, thin films, or nanofibrous coatings) on hierarchically textured aluminum surfaces, collectively imparting high level robustness of superhydrophobicity under adverse conditions. These surfaces simultaneously exhibit chemical stability, mechanical durability and droplet impalement resistance. They impressively maintained their superhydrophobicity after exposure to severely adverse chemical environments like strong alkaline (pH ∼ 9-10), acidic (pH ∼ 2-3), and ionic solutions (3.5 weight% of sodium chloride), and could simultaneously resist water droplet impalement up to an impact velocity of 3.2 m s(-1) as well as withstand standard mechanical durability tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...