RESUMEN
CONTEXT: SOX11 variants cause Coffin-Siris Syndrome (CSS), characterized by developmental delay, hypogonadotropic hypogonadism (HH), skeletal and facial defects. OBJECTIVE: To examine the contribution of SOX11 variants to the pathogenesis of Idiopathic Hypogonadotropic Hypogonadism (IHH), a disorder caused by hypothalamic GnRH deficiency. SETTING: The Reproductive Endocrine Unit and the Pediatric Endocrinology Division, Massachusetts General Hospital. PATIENTS OR OTHER PARTICIPANTS: A cohort of 1810 unrelated IHH probands. INTERVENTIONS: Exome sequencing data from the entire cohort were examined for SOX11 rare single nucleotide variants (SNVs) [minor allele frequency in the gnomAD database <0.1%]. Rare SOX11 variant association testing was performed between the IHH and gnomAD population. Phenotyping of individuals harboring pathogenic/likely pathogenic SNVs (determined by the ACMG criteria) was performed. MAIN OUTCOMES/RESULTS: Four pathogenic SOX11 SNVs were identified in 5 IHH probands. The IHH cohort was enriched for SOX11 protein truncating SNVs (frameshift/nonsense) across the entire protein (2 SNVs in 3 IHH cases [p.S303X (de-novo); p.S345Afs*13]; p 0.0004981) and for SOX11 missense SNVs within the SOX11-high-mobility group (HMG) domain (2 SNVs in 2 IHH cases p.G84D[de-novo]; p.P114S; p=0.00313922). The phenotypic spectrum of SOX11 variant carriers revealed additional endocrine defects including anosmic and normosmic forms of IHH, growth-hormone deficiency, pituitary and hypothalamic structural defects, and hypothyroidism. A pathogenic SOX11 SNV was also identified in a patient with functional HH (FHH, p.R100Q). CSS-associated features were present in 4/5 probands. CONCLUSIONS: Deleterious SOX11 variants cause IHH and other pituitary hormone deficiencies, suggesting that the human SOX11-associated disorder may stem from both hypothalamic and pituitary level defects.
RESUMEN
Pubertal timing is a highly heritable trait in the general population. Recently, a large-scale exome-wide association study has implicated rare variants in six genes (KDM4C, MC3R, MKRN3, PDE10A, TACR3, and ZNF483) as genetic determinants of pubertal timing within the general population. Two of the genes (TACR3, MKRN3) are already implicated in extreme disorders of pubertal timing. This observation suggests that there may be a pervasive "genetic risk continuum" wherein genes that govern pubertal timing in the general population, by extension, may also be causal for rare Mendelian disorders of pubertal timing. Hence, we hypothesized that the four novel genes linked to pubertal timing in the population will also contribute to idiopathic hypogonadotropic hypogonadism (IHH), a genetic disorder characterized by absent puberty. Exome sequencing data from 1322 unrelated IHH probands were reviewed for rare sequence variants (RSVs) (minor allele frequency bins: <1%; <0.1%; <0.01%) in the six genes linked to puberty in the general population. A gene-based rare variant association testing (RVAT) was performed between the IHH cohort and a reference public genomic sequences repository-the Genome Aggregation Database (gnomAD). As expected, RVAT analysis showed that RSVs in TACR3, a known IHH gene, were significantly enriched in the IHH cohort compared to gnomAD cohort across all three MAF bins. However, RVAT analysis of the remaining five genes failed to show any RSV enrichment in the IHH cohort across all MAF bins. Our findings argue strongly against a pervasive genetic risk continuum between pubertal timing in the general population and extreme pubertal phenotypes. The biologic basis of such distinct genetic architectures' merits further evaluation.
Asunto(s)
Hipogonadismo , Pubertad , Humanos , Hipogonadismo/genética , Masculino , Pubertad/genética , Femenino , Adolescente , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Adulto Joven , Receptores de Neuroquinina-3 , Ubiquitina-Proteína LigasasRESUMEN
Context: Activation of fibroblast growth factor receptor 1 (FGFR1) signaling improves the metabolic health of animals and humans, while inactivation leads to diabetes in mice. Direct human genetic evidence for the role of FGFR1 signaling in human metabolic health has not been fully established. Objective: We hypothesized that individuals with naturally occurring FGFR1 variants ("experiments of nature") will display glucose dysregulation. Methods: Participants with rare FGFR1 variants and noncarrier controls. Using a recall-by-genotype approach, we examined the ß-cell function and insulin sensitivity of 9 individuals with rare FGFR1 deleterious variants compared to 27 noncarrier controls, during a frequently sampled intravenous glucose tolerance test at the Reproductive Endocrine Unit and the Harvard Center for Reproductive Medicine, Massachusetts General Hospital. FGFR1-mutation carriers displayed higher ß-cell function in the face of lower insulin sensitivity compared to controls. Conclusion: These findings suggest that impaired FGFR1 signaling may contribute to an early insulin resistance phase of diabetes pathogenesis and support the candidacy of the FGFR1 signaling pathway as a therapeutic target for improving the human metabolic health.
RESUMEN
Disorders of sex development (DSDs) are very frequently encountered in ancient Greek mythology. One of the most striking types of DSD described in many myths is gender transformation wherein a female becomes a male or vice versa. Herein, we present via the marvelous myth of Poseidon and Caeneus a case of pubertal gender inversion. A medical interpretation of the myth whereby we attempt to form a diagnosis of this case of DSD is also presented.
Asunto(s)
Mitología , Humanos , Femenino , Masculino , Pubertad/fisiología , Trastornos del Desarrollo Sexual/historia , Trastornos del Desarrollo Sexual/diagnóstico , Historia Antigua , Grecia , Antigua GreciaRESUMEN
CONTEXT: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, with disease loci identified from genome-wide association studies (GWAS) having largely unknown relationships to disease pathogenesis. OBJECTIVE: This work aimed to group PCOS GWAS loci into genetic clusters associated with disease pathophysiology. METHODS: Cluster analysis was performed for 60 PCOS-associated genetic variants and 49 traits using GWAS summary statistics. Cluster-specific PCOS partitioned polygenic scores (pPS) were generated and tested for association with clinical phenotypes in the Mass General Brigham Biobank (MGBB, N = 62 252). Associations with clinical outcomes (type 2 diabetes [T2D], coronary artery disease [CAD], and female reproductive traits) were assessed using both GWAS-based pPS (DIAMANTE, N = 898,130, CARDIOGRAM/UKBB, N = 547 261) and individual-level pPS in MGBB. RESULTS: Four PCOS genetic clusters were identified with top loci indicated as following: (i) cluster 1/obesity/insulin resistance (FTO); (ii) cluster 2/hormonal/menstrual cycle changes (FSHB); (iii) cluster 3/blood markers/inflammation (ATXN2/SH2B3); (iv) cluster 4/metabolic changes (MAF, SLC38A11). Cluster pPS were associated with distinct clinical traits: Cluster 1 with increased body mass index (P = 6.6 × 10-29); cluster 2 with increased age of menarche (P = 1.5 × 10-4); cluster 3 with multiple decreased blood markers, including mean platelet volume (P = 3.1 ×10-5); and cluster 4 with increased alkaline phosphatase (P = .007). PCOS genetic clusters GWAS-pPSs were also associated with disease outcomes: cluster 1 pPS with increased T2D (odds ratio [OR] 1.07; P = 7.3 × 10-50), with replication in MGBB all participants (OR 1.09, P = 2.7 × 10-7) and females only (OR 1.11, 4.8 × 10-5). CONCLUSION: Distinct genetic backgrounds in individuals with PCOS may underlie clinical heterogeneity and disease outcomes.
Asunto(s)
Diabetes Mellitus Tipo 2 , Mitoguazona/análogos & derivados , Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Sitios Genéticos , Análisis por Conglomerados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genéticaRESUMEN
PURPOSE: Prostate cancer patients are a heterogeneous group as regards the aggressiveness of the disease. The relationship of steroid hormones with the aggressiveness of prostate cancer is unclear. It is known that the anti-Müllerian hormone (AMH) inhibits prostate cancer cell lines in vitro. The aim of this study is to investigate the relationship of AMH and steroid hormones with the aggressiveness of prostate cancer. METHODS: This was a prospective study of consecutive radical prostatectomy patients. We measured the following hormones: total testosterone, sex hormone-binding globulin, albumin, luteinizing hormone, follicle-stimulating hormone, estradiol, dehydroepiandrosterone sulfate, androstenedione, and AMH. The minimum follow-up after radical prostatectomy was 5 years. For the aggressiveness of prostate cancer, we considered the following three variables: post-operative Gleason score (GS) ≥ 8, TNM pΤ3 disease, and prostate-specific antigen (PSA) biochemical recurrence (BCR). RESULTS: In total, 91 patients were enrolled. The mean age and PSA were 64.8 years and 9.3 ng/dl, respectively. The median post-operative GS was 7. Low AMH blood levels were correlated with higher post-operative GS (p = 0.001), as well as with PSA BCR (p = 0.043). With pT3 disease, only albumin was (negatively) correlated (p = 0.008). ROC analysis showed that AMH is a good predictor of BCR (AUC 0.646, 95% CI 0.510-0.782, p = 0.043); a cutoff value of 3.06 ng/dl had a positive prognostic value of 71.4% and a negative prognostic value of 63.3% for BCR. Cox regression analysis showed that AMH is a statistically significant and independent prognostic marker for BCR (p = 0.013). More precisely, for every 1 ng/ml of AMH rise, the probability for PSA BCR decreases by 20.8% (HR = 0.792). Moreover, in Kaplan-Meier analysis, disease-free survival is more probable in patients with AMΗ ≥ 3.06 ng/ml (p = 0.004). CONCLUSIONS: Low AMH blood levels were correlated with aggressive prostate cancer in this radical prostatectomy cohort of patients. Therefore, AMH could be a prognostic biomarker for the aggressiveness of the disease.
Asunto(s)
Hormona Antimülleriana , Biomarcadores de Tumor , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Hormona Antimülleriana/sangre , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/sangre , Antígeno Prostático Específico/sangre , Clasificación del Tumor , Testosterona/sangreRESUMEN
Idiopathic hypogonadotropic hypogonadism (IHH) is characterized by the absence of pubertal development and subsequent impaired fertility often due to gonadotropin-releasing hormone (GnRH) deficits. Exome sequencing of two independent cohorts of IHH patients identified 12 rare missense variants in POU6F2 in 15 patients. POU6F2 encodes two distinct isoforms. In the adult mouse, expression of both isoform1 and isoform2 was detected in the brain, pituitary, and gonads. However, only isoform1 was detected in mouse primary GnRH cells and three immortalized GnRH cell lines, two mouse and one human. To date, the function of isoform2 has been verified as a transcription factor, while the function of isoform1 has been unknown. In the present report, bioinformatics and cell assays on a human-derived GnRH cell line reveal a novel function for isoform1, demonstrating it can act as a transcriptional regulator, decreasing GNRH1 expression. In addition, the impact of the two most prevalent POU6F2 variants, identified in five IHH patients, that were located at/or close to the DNA-binding domain was examined. Notably, one of these mutations prevented the repression of GnRH transcripts by isoform1. Normally, GnRH transcription increases as GnRH cells mature as they near migrate into the brain. Augmentation earlier during development can disrupt normal GnRH cell migration, consistent with some POU6F2 variants contributing to the IHH pathogenesis.
Asunto(s)
Encéfalo , Hipogonadismo , Mutación Missense , Factores del Dominio POU , Animales , Humanos , Ratones , Hormona Liberadora de Gonadotropina/genética , Factores del Dominio POU/genética , Hipogonadismo/genéticaRESUMEN
Isolated hypogonadotropic hypogonadism (IHH) is a rare disease with hypogonadism and infertility caused by the defects in embryonic migration of hypothalamic gonadotropin-releasing hormone (GnRH) neurons, hypothalamic GnRH secretion or GnRH signal transduction. PROKR2 gene, encoding a G-protein coupled receptor PROKR2, is one of the most frequently mutated genes identified in IHH patients. However, the functional consequences of several PROKR2 mutants remain elusive. In this study, we systematically analyzed the Gαq, Gαs and ERK1/2 signaling of 23 IHH-associated PROKR2 mutations which are yet to be functionally characterized. We demonstrate that blockage of Gαq, instead of MAPK/ERK pathway, inhibited PROK2-induced migration of PROKR2-expressing cells, implying that PROKR2-related IHH results primarily due to Gαq signaling pathway disruption. Combined with previous reports, we categorized a total of 63 IHH-associated PROKR2 mutations into four distinct groups according Gαq pathway functionality: (i) neutral (N, >80% activity); (ii) low pathogenicity (L, 50-80% activity); (iii) medium pathogenicity (M, 20-50% activity) and (iv) high pathogenicity (H, <20% activity). We further compared the cell-based functional results with in silico mutational prediction programs. Our results indicated that while Sorting Intolerant from Tolerant predictions were accurate for transmembrane region mutations, mutations localized in the intracellular and extracellular domains were accurately predicted by the Combined Annotation Dependent Depletion prediction tool. Our results thus provide a functional database that can be used to guide diagnosis and appropriate genetic counseling in IHH patients with PROKR2 mutations.
Asunto(s)
Hipogonadismo , Humanos , Hipogonadismo/genética , Mutación , Hormona Liberadora de Gonadotropina/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Gonadotropinas , Receptores de Péptidos/genéticaRESUMEN
Pathogenic SRY-box transcription factor 2 (SOX2) variants typically cause severe ocular defects within a SOX2 disorder spectrum that includes hypogonadotropic hypogonadism. We examined exome-sequencing data from a large, well-phenotyped cohort of patients with idiopathic hypogonadotropic hypogonadism (IHH) for pathogenic SOX2 variants to investigate the underlying pathogenic SOX2 spectrum and its associated phenotypes. We identified 8 IHH individuals harboring heterozygous pathogenic SOX2 variants with variable ocular phenotypes. These variant proteins were tested in vitro to determine whether a causal relationship between IHH and SOX2 exists. We found that Sox2 was highly expressed in the hypothalamus of adult mice and colocalized with kisspeptin 1 (KISS1) expression in the anteroventral periventricular nucleus of adult female mice. In vitro, shRNA suppression of mouse SOX2 protein in Kiss-expressing cell lines increased the levels of human kisspeptin luciferase (hKiss-luc) transcription, while SOX2 overexpression repressed hKiss-luc transcription. Further, 4 of the identified SOX2 variants prevented this SOX2-mediated repression of hKiss-luc. Together, these data suggest that pathogenic SOX2 variants contribute to both anosmic and normosmic forms of IHH, attesting to hypothalamic defects in the SOX2 disorder spectrum. Our study describes potentially novel mechanisms contributing to SOX2-related disease and highlights the necessity of SOX2 screening in IHH genetic evaluation irrespective of associated ocular defects.
Asunto(s)
Hipogonadismo , Adulto , Animales , Femenino , Humanos , Ratones , Heterocigoto , Hipogonadismo/genética , Mutación , Fenotipo , Factores de Transcripción SOXB1/genéticaRESUMEN
CONTEXT: Isolated hypogonadotropic hypogonadism (IHH) is phenotypically and genetically heterogeneous. OBJECTIVE: This work aimed to determine the correlation between genotypic severity with pubertal and neuroendocrine phenotypes in IHH men. METHODS: A retrospective study was conducted (1980-2020) examining olfaction (Kallmann syndrome [KS] vs normosmic IHH [nHH]), baseline testicular volume (absent vs partial puberty), neuroendocrine profiling (pulsatile vs apulsatile luteinizing hormone [LH] secretion), and genetic variants in 62 IHH-associated genes through exome sequencing (ES). RESULTS: In total, 242 men (KS: n = 131 [54%], nHH: n = 111 [46%]) were included. Men with absent puberty had significantly lower gonadotropin levels (P < .001) and were more likely to have undetectable LH (P < .001). Logistic regression showed partial puberty as a statistically significant predictor of pulsatile LH secretion (R2 = 0.71, P < .001, OR: 10.8; 95% CI, 3.6-38.6). Serum LH of 2.10 IU/L had a 95% true positive rate for predicting LH pulsatility. Genetic analyses in 204 of 242 IHH men with ES data available revealed 36 of 204 (18%) men carried protein-truncating variants (PTVs) in 12 IHH genes. Men with absent puberty and apulsatile LH were enriched for oligogenic PTVs (P < .001), with variants in ANOS1 being the predominant PTV in this genotype-phenotype association. Men with absent puberty were enriched for ANOS1 PTVs compared to partial puberty counterparts (P = .002). PTVs in other IHH genes imparted more variable reproductive phenotypic severity. CONCLUSION: Partial puberty and LH greater than or equal to 2.10 IU/L are proxies for pulsatile LH secretion. ANOS1 PTVs confer severe reproductive phenotypes. Variable phenotypic severity in the face of severe genetic variants in other IHH genes point to significant neuroendocrine plasticity of the HPG axis in IHH men.
Asunto(s)
Hipogonadismo , Síndrome de Kallmann , Humanos , Estudios Retrospectivos , Hipogonadismo/genética , Síndrome de Kallmann/genética , Genotipo , FenotipoRESUMEN
Normal aging is linked to various endocrine gland changes, including changes in the adrenal glands. Aging is linked to alterations of the hypothalamic-pituitary-adrenal (HPA) axis, including an increase in cortisol levels, a disruption of the negative cortisol feedback, and attenuation of cortisol's diurnal pattern. In addition, secretion of aldosterone and adrenal androgens [dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS)] from the adrenal cortex decreases with aging. In this review, we describe normal adrenal function, the adrenal response to stress and immunomodulation in aging individuals as well as the effects of adrenal aging on body composition, metabolic profile, bone health and cognition.
Asunto(s)
Deshidroepiandrosterona , Inmunosenescencia , Humanos , Hidrocortisona/metabolismo , Envejecimiento/fisiología , Corticoesteroides , Sulfato de DeshidroepiandrosteronaRESUMEN
Congenital hypogonadotropic hypogonadism (HH) is a heterogeneous genetic disorder characterized by disrupted puberty and infertility. In most cases, HH is abiding yet 10-15% undergo reversal. Men with HH and absent and partial puberty (i.e., testicular volume <4mL and >4mL respectively) have been well-studied, but the rare fertile eunuch (FE) variant remains poorly characterized. This natural history study of 240 men with HH delineates the clinical presentation, neuroendocrine profile, rate of reversal and genetics of the FE variant. We compared three HH groups: FE (n=38), absent puberty (n=139), and partial puberty (n=63). The FE group had no history of micropenis and 2/38 (5%) had cryptorchidism (p<0.0001 vs. other groups). The FE group exhibited higher rates of detectable gonadotropins, higher mean LH/FSH levels, and higher serum inhibin B levels (all p<0.0001). Neuroendocrine profiling showed pulsatile LH secretion in 30/38 (79%) of FE men (p<0.0001) and 16/36 (44%) FE men underwent spontaneous reversal of HH (p<0.001). The FE group was enriched for protein-truncating variants (PTVs) in GNRHR and FGFR1 and 4/30 (13%) exhibited oligogenic PTVs. Findings suggest men with the FE variant exhibit the mildest neuroendocrine defects of HH men and the FE sub-type represents the first identified phenotypic predictor for reversible HH.
Asunto(s)
Eunuquismo , Hipogonadismo , Humanos , Masculino , Gonadotropinas , Sistemas NeurosecretoresRESUMEN
PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.
Asunto(s)
Hipogonadismo , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Hipogonadismo/genética , Hormona Liberadora de Gonadotropina/genética , Proteínas Represoras , Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de GTPasa/genéticaRESUMEN
According to Greek mythology, the spring waters of Salmacis (or Salmakis) feminized the god Hermaphroditus (or Hermaphroditos) and transformed his nature from male to half-male and half-female. The mythical properties of these waters are described in the writings of authors and philosophers of the Hellenistic period. It is evident that the spring of Salmacis and lake actually existed (located in Halicarnassus, today Bodrum, Turkey) and are not the product of poetic imagination. Hence, it could be hypothesized that there were certain natural elements in the waters that had a feminizing effect on the male reproductive axis. We now know, in fact, that naturally occurring environmental agents, also known as endocrine disruptors, can affect the endocrine and reproductive function of both males and females. However, since most endocrine disruptors today are manmade products of the modern industrial lifestyle, the presence and effect of naturally occurring disruptors in times preceding the Industrial Revolution are not widely discussed. It is thus against this background that we seek to formulate a differential diagnosis of male feminization attributable to the effect of natural environmental factors in the form of endocrine disruptors that will have existed in environments round the globe since time immemorial. We conclude that if there had been an accumulation of the mycotoxin zearalenone (ZEA) in the waters of Salmacis, chronic exposure to the lake's water could have resulted in the phenotypic changes described in the Salmacis myth.
Asunto(s)
Disruptores Endocrinos , Zearalenona , Masculino , Humanos , Femenino , Mitología , Grecia , TurquíaRESUMEN
BACKGROUND: Type 2 diabetes (T2D) is a worldwide scourge caused by both genetic and environmental risk factors that disproportionately afflicts communities of color. Leveraging existing large-scale genome-wide association studies (GWAS), polygenic risk scores (PRS) have shown promise to complement established clinical risk factors and intervention paradigms, and improve early diagnosis and prevention of T2D. However, to date, T2D PRS have been most widely developed and validated in individuals of European descent. Comprehensive assessment of T2D PRS in non-European populations is critical for equitable deployment of PRS to clinical practice that benefits global populations. METHODS: We integrated T2D GWAS in European, African, and East Asian populations to construct a trans-ancestry T2D PRS using a newly developed Bayesian polygenic modeling method, and assessed the prediction accuracy of the PRS in the multi-ethnic Electronic Medical Records and Genomics (eMERGE) study (11,945 cases; 57,694 controls), four Black cohorts (5137 cases; 9657 controls), and the Taiwan Biobank (4570 cases; 84,996 controls). We additionally evaluated a post hoc ancestry adjustment method that can express the polygenic risk on the same scale across ancestrally diverse individuals and facilitate the clinical implementation of the PRS in prospective cohorts. RESULTS: The trans-ancestry PRS was significantly associated with T2D status across the ancestral groups examined. The top 2% of the PRS distribution can identify individuals with an approximately 2.5-4.5-fold of increase in T2D risk, which corresponds to the increased risk of T2D for first-degree relatives. The post hoc ancestry adjustment method eliminated major distributional differences in the PRS across ancestries without compromising its predictive performance. CONCLUSIONS: By integrating T2D GWAS from multiple populations, we developed and validated a trans-ancestry PRS, and demonstrated its potential as a meaningful index of risk among diverse patients in clinical settings. Our efforts represent the first step towards the implementation of the T2D PRS into routine healthcare.
Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Teorema de Bayes , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Humanos , Estudios Prospectivos , Factores de RiesgoAsunto(s)
Acidosis Láctica , Neoplasias de la Mama , Coma Hiperglucémico Hiperosmolar no Cetósico , Acidosis Láctica/inducido químicamente , Neoplasias de la Mama/complicaciones , Femenino , Humanos , Coma Hiperglucémico Hiperosmolar no Cetósico/complicaciones , Insulina , Insulina Regular Humana , Proteínas Proto-Oncogénicas c-aktRESUMEN
CONTEXT: The genetic architecture of isolated hypogonadotropic hypogonadism (IHH) has not been completely defined. OBJECTIVE: To determine the role of copy number variants (CNVs) in IHH pathogenicity and define their phenotypic spectrum. METHODS: Exome sequencing (ES) data in IHH probands (nâ =â 1394) (Kallmann syndrome [IHH with anosmia; KS], nâ =â 706; normosmic IHH [nIHH], nâ =â 688) and family members (nâ =â 1092) at the Reproductive Endocrine Unit and the Center for Genomic Medicine of Massachusetts General Hospital were analyzed for CNVs and single nucleotide variants (SNVs)/indels in 62 known IHH genes. IHH subjects without SNVs/indels in known genes were considered "unsolved." Phenotypes associated with CNVs were evaluated through review of patient medical records. A total of 29 CNVs in 13 genes were detected (overall IHH cohort prevalence: ~2%). Almost all (28/29) CNVs occurred in unsolved IHH cases. While some genes (eg, ANOS1 and FGFR1) frequently harbor both CNVs and SNVs/indels, the mutational spectrum of others (eg, CHD7) was restricted to SNVs/indels. Syndromic phenotypes were seen in 83% and 63% of IHH subjects with multigenic and single gene CNVs, respectively. CONCLUSION: CNVs in known genes contribute to ~2% of IHH pathogenesis. Predictably, multigenic contiguous CNVs resulted in syndromic phenotypes. Syndromic phenotypes resulting from single gene CNVs validate pleiotropy of some IHH genes. Genome sequencing approaches are now needed to identify novel genes and/or other elusive variants (eg, noncoding/complex structural variants) that may explain the remaining missing etiology of IHH.
Asunto(s)
Hipogonadismo , Síndrome de Kallmann , Variaciones en el Número de Copia de ADN , Humanos , Hipogonadismo/epidemiología , Hipogonadismo/genética , Síndrome de Kallmann/genética , Mutación , Fenotipo , PrevalenciaRESUMEN
AIMS: High rates of newly diagnosed diabetes mellitus (NDDM) have been reported in association with coronavirus disease-2019 (COVID-19). Factors associated with NDDM and long-term glycemic outcomes are not known. METHODS: Retrospective review of individuals admitted with COVID-19 and diabetes mellitus (DM; based on labs, diagnoses, outpatient insulin use, or severe inpatient hyperglycemia) between March and September 2020, with follow-up through July 2021. RESULTS: Of 1902 individuals admitted with COVID-19, 594 (31.2%) had DM; 77 (13.0%) of these had NDDM. Compared to pre-existing DM, NDDM was more common in younger patients and less common in those of non-Hispanic White race/ethnicity. Glycemic parameters were lower and inflammatory markers higher in patients with NDDM. In adjusted models, NDDM was associated with lower insulin requirements, longer length of stay, and intensive care unit admission but not death. Of 64 survivors with NDDM, 36 (56.3%) continued to have DM, 26 (40.6%) regressed to normoglycemia or pre-diabetes, and 2 were unable to be classified at a median follow-up of 323 days. CONCLUSIONS: Diabetes diagnosed at COVID-19 presentation is associated with lower glucose but higher inflammatory markers and ICU admission, suggesting stress hyperglycemia as a major physiologic mechanism. Approximately half of such individuals experience regression of DM.
Asunto(s)
COVID-19 , Diabetes Mellitus , Hiperglucemia , Glucemia , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/epidemiología , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiología , Diabetes Mellitus/terapia , Humanos , Hiperglucemia/diagnóstico , Hiperglucemia/epidemiología , Fenotipo , Estudios RetrospectivosRESUMEN
PURPOSE: Teenage pregnancies have consistently been associated with preterm labor in a wide range of studies. Evidence regarding the incidence and potential complications of teenage pregnancies in Greece is at present scarce. The aim of this study was to evaluate the perinatal outcomes as well as the risk of perinatal and obstetric complications of teenage pregnancies. METHODS: This retrospective study was conducted at the Department of Obstetrics and Gynecology of the University Hospital of Patras, Greece, and all data recorded concerned the year 2019 (January-December). We retrospectively reviewed 643 cases of singleton pregnancies divided into two groups, as follows: Group A included women of average maternal age (AMA) (20-34 years old), and Group B included teenagers, defined as women less than 20 years old. Data regarding demographic and pregnancy characteristics as well as obstetric and neonatal complications were collected. RESULTS: Teenage pregnancies accounted for 6.7% of all deliveries. We detected significantly higher rates of preterm births (p = 0.025), primiparity (p < 0.001), and negative marital status (p < 0.001) in teenage mothers compared to pregnant women of AMA. There were no significant differences concerning other factors between the two groups. CONCLUSIONS: The findings of the present study raise concern regarding the perinatal, obstetric, and social consequences of teenage pregnancies in Greece. Extended studies that will include further information on antenatal care and detailed socioeconomic factors (i.e., level of education, income, and ethnicity) are required to formulate reliable conclusions concerning teenage pregnancies and their effect on maternal and neonatal health.