Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 305, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942762

RESUMEN

This study assesses the neuroprotective potential of CPP-P1, a conjugate of an anti-apoptotic peptain-1 (P1) and a cell-penetrating peptide (CPP) in in vitro, in vivo, and ex vivo glaucoma models. Primary retinal ganglion cells (RGCs) were subjected to either neurotrophic factor (NF) deprivation for 48 h or endothelin-3 (ET-3) treatment for 24 h and received either CPP-P1 or vehicle. RGC survival was analyzed using a Live/Dead assay. Axotomized human retinal explants were treated with CPP-P1 or vehicle for seven days, stained with RGC marker RBPMS, and RGC survival was analyzed. Brown Norway (BN) rats with elevated intraocular pressure (IOP) received weekly intravitreal injections of CPP-P1 or vehicle for six weeks. RGC function was evaluated using a pattern electroretinogram (PERG). RGC and axonal damage were also assessed. RGCs from ocular hypertensive rats treated with CPP-P1 or vehicle for seven days were isolated for transcriptomic analysis. RGCs subjected to 48 h of NF deprivation were used for qPCR target confirmation. NF deprivation led to a significant loss of RGCs, which was markedly reduced by CPP-P1 treatment. CPP-P1 also decreased ET-3-mediated RGC death. In ex vivo human retinal explants, CPP-P1 decreased RGC loss. IOP elevation resulted in significant RGC loss in mid-peripheral and peripheral retinas compared to that in naive rats, which was significantly reduced by CPP-P1 treatment. PERG amplitude decline in IOP-elevated rats was mitigated by CPP-P1 treatment. Following IOP elevation in BN rats, the transcriptomic analysis showed over 6,000 differentially expressed genes in the CPP-P1 group compared to the vehicle-treated group. Upregulated pathways included CREB signaling and synaptogenesis. A significant increase in Creb1 mRNA and elevated phosphorylated Creb were observed in CPP-P1-treated RGCs. Our study showed that CPP-P1 is neuroprotective through CREB signaling enhancement in several settings that mimic glaucomatous conditions. The findings from this study are significant as they address the pressing need for the development of efficacious therapeutic strategies to maintain RGC viability and functionality associated with glaucoma.

2.
Front Neurosci ; 17: 1202167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928737

RESUMEN

Efficient cellular communication is essential for the brain to regulate diverse functions like muscle contractions, memory formation and recall, decision-making, and task execution. This communication is facilitated by rapid signaling through electrical and chemical messengers, including voltage-gated ion channels and neurotransmitters. These messengers elicit broad responses by propagating action potentials and mediating synaptic transmission. Calcium influx and efflux are essential for releasing neurotransmitters and regulating synaptic transmission. Mitochondria, which are involved in oxidative phosphorylation, and the energy generation process, also interact with the endoplasmic reticulum to store and regulate cytoplasmic calcium levels. The number, morphology, and distribution of mitochondria in different cell types vary based on energy demands. Mitochondrial damage can cause excess reactive oxygen species (ROS) generation. Mitophagy is a selective process that targets and degrades damaged mitochondria via autophagosome-lysosome fusion. Defects in mitophagy can lead to a buildup of ROS and cell death. Numerous studies have attempted to characterize the relationship between mitochondrial dysfunction and calcium dysregulation in neurodegenerative diseases such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, and aging. Interventional strategies to reduce mitochondrial damage and accumulation could serve as a therapeutic target, but further research is needed to unravel this potential. This review offers an overview of calcium signaling related to mitochondria in various neuronal cells. It critically examines recent findings, exploring the potential roles that mitochondrial dysfunction might play in multiple neurodegenerative diseases and aging. Furthermore, the review identifies existing gaps in knowledge to guide the direction of future research.

3.
Front Neurosci ; 17: 1299552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965225

RESUMEN

Neurons in the central nervous system are among the most metabolically active cells in the body, characterized by high oxygen consumption utilizing glucose both aerobically and anaerobically. Neurons have an abundance of mitochondria which generate adequate ATP to keep up with the high metabolic demand. One consequence of the oxidative phosphorylation mechanism of ATP synthesis, is the generation of reactive oxygen species which produces cellular injury as well as damage to mitochondria. Mitochondria respond to injury by fusion which serves to ameliorate the damage through genetic complementation. Mitochondria also undergo fission to meet an increased energy demand. Loss of mitochondria is also compensated by increased biogenesis to generate new mitochondria. Damaged mitochondria are removed by mitophagy, an autophagic process, in which damaged mitochondria are surrounded by a membrane to form an autophagosome which ultimately fuses with the lysosome resulting in degradation of faulty mitochondria. Dysregulation of mitophagy has been reported in several central nervous system disorders, including, Alzheimer's disease and Parkinson's disease. Recent studies point to aberrant mitophagy in ocular neurodegenerative disorders which could be an important contributor to the disease etiology/pathology. This review article highlights some of the recent findings that point to dysregulation of mitophagy and it's underlying mechanisms in ocular neurodegenerative diseases, including, glaucoma, age-related macular degeneration and diabetic retinopathy.

4.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511316

RESUMEN

Oxidative stress (OS)-induced mitochondrial damage is a risk factor for primary open-angle glaucoma (POAG). Mitochondria-targeted novel antioxidant therapies could unearth promising drug candidates for the management of POAG. Previously, our dual-acting hybrid molecule SA-2 with nitric oxide-donating and antioxidant activity reduced intraocular pressure and improved aqueous humor outflow in rodent eyes. Here, we examined the mechanistic role of SA-2 in trabecular meshwork (TM) cells in vitro and measured the activity of intracellular antioxidant enzymes during OS. Primary human TM cells isolated from normal (hNTM) or glaucomatous (hGTM) post-mortem donors and transformed glaucomatous TM cells (GTM-3) were used for in vitro assays. We examined the effect of SA-2 on oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro using Seahorse Analyzer with or without the oxidant, tert-butyl hydroperoxide (TBHP) treatment. Concentrations of total antioxidant enzymes, catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPx) were measured. We observed significant protection of both hNTM and hGTM cells from TBHP-induced cell death by SA-2. Antioxidant enzymes were elevated in SA-2-treated cells compared to TBHP-treated cells. In addition, SA-2 demonstrated an increase in mitochondrial metabolic parameters. Altogether, SA-2 protected both normal and glaucomatous TM cells from OS via increasing mitochondrial energy parameters and the activity of antioxidant enzymes.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Antioxidantes/metabolismo , Malla Trabecular/metabolismo , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Mitocondrias/metabolismo
5.
Front Neurosci ; 17: 1198343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250427

RESUMEN

Glaucoma is a leading cause of blindness worldwide, commonly associated with elevated intraocular pressure (IOP), leading to degeneration of the optic nerve and death of retinal ganglion cells, the output neurons in the eye. In recent years, many studies have implicated mitochondrial dysfunction as a crucial player in glaucomatous neurodegeneration. Mitochondrial function has been an increasingly researched topic in glaucoma, given its vital role in bioenergetics and propagation of action potentials. One of the most metabolically active tissues in the body characterized by high oxygen consumption is the retina, particularly the retinal ganglion cells (RGCs). RGCs, which have long axons that extend from the eyes to the brain, rely heavily on the energy generated by oxidative phosphorylation for signal transduction, rendering them more vulnerable to oxidative damage. In various glaucoma models, mitochondrial dysfunction and stress from protein aggregates in the endoplasmic reticulum (ER) have been observed in the RGCs. However, it has been shown that the two organelles are connected through a network called mitochondria-associated ER membranes (MAMs); hence this crosstalk in a pathophysiological condition such as glaucoma should be evaluated. Here, we review the current literature suggestive of mitochondrial and ER stress related to glaucoma, indicating potential cross-signaling and the potential roles of MAMs.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38464735

RESUMEN

Glaucoma is a chronic and progressive eye disease, commonly associated with elevated intraocular pressure (IOP) and characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells (RGCs). The pathological changes in glaucoma are triggered by multiple mechanisms and both mechanical effects and vascular factors are thought to contribute to the etiology of glaucoma. Various studies have shown that endothelin-1 (ET-1), a vasoactive peptide, acting through its G protein coupled receptors, ETA and ETB, plays a pathophysiologic role in glaucoma. However, the mechanisms by which ET-1 contribute to neurodegeneration remain to be completely understood. Our laboratory and others demonstrated that macitentan (MAC), a pan endothelin receptor antagonist, has neuroprotective effects in rodent models of IOP elevation. The current study aimed to determine if oral administration of a dual endothelin antagonist, macitentan, could promote neuroprotection in an acute model of intravitreal administration of ET-1. We demonstrate that vasoconstriction following the intravitreal administration of ET-1 was attenuated by dietary administration of the ETA/ETB dual receptor antagonist, macitentan (5 mg/kg body weight) in retired breeder Brown Norway rats. ET-1 intravitreal injection produced a 40% loss of RGCs, which was significantly lower in macitentan-treated rats. We also evaluated the expression levels of glial fibrillary acidic protein (GFAP) at 24 h and 7 days post intravitreal administration of ET-1 in Brown Norway rats as well as following ET-1 treatment in cultured human optic nerve head astrocytes. We observed that at the 24 h time point the expression levels of GFAP was upregulated (indicative of glial activation) following intravitreal ET-1 administration in both retina and optic nerve head regions. However, following macitentan administration for 7 days after intravitreal ET-1 administration, we observed an upregulation of GFAP expression, compared to untreated rats injected intravitreally with ET-1 alone. Macitentan treatment in ET-1 administered rats showed protection of RGC somas but was not able to preserve axonal integrity and functionality. The endothelin receptor antagonist, macitentan, has neuroprotective effects in the retinas of Brown Norway rats acting through different mechanisms, including enhancement of RGC survival and reduction of ET-1 mediated vasoconstriction.

7.
Cells ; 11(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36497005

RESUMEN

The mechanisms underlying the neuroprotective effects of the hybrid antioxidant-nitric oxide donating compound SA-2 in retinal ganglion cell (RGC) degeneration models were evaluated. The in vitro trophic factor (TF) deprivation model in primary rat RGCs and ex vivo human retinal explants were used to mimic glaucomatous neurodegeneration. Cell survival was assessed after treatment with vehicle or SA-2. In separate experiments, tert-Butyl hydroperoxide (TBHP) and endothelin-3 (ET-3) were used in ex vivo rat retinal explants and primary rat RGCs, respectively, to induce oxidative damage. Mitochondrial and intracellular reactive oxygen species (ROS) were assessed following treatments. In the TF deprivation model, SA-2 treatment produced a significant decrease in apoptotic and dead cell counts in primary RGCs and a significant increase in RGC survival in ex vivo human retinal explants. In the oxidative stress-induced models, a significant decrease in the production of ROS was observed in the SA-2-treated group compared to the vehicle-treated group. Compound SA-2 was neuroprotective against various glaucomatous insults in the rat and human RGCs by reducing apoptosis and decreasing ROS levels. Amelioration of mitochondrial and cellular oxidative stress by SA-2 may be a potential therapeutic strategy for preventing neurodegeneration in glaucomatous RGCs.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Humanos , Ratas , Animales , Roedores , Neuroprotección , Glaucoma/tratamiento farmacológico , Supervivencia Celular
8.
Cell Death Dis ; 13(11): 958, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379926

RESUMEN

Ocular hypertension is a significant risk factor for vision loss in glaucoma due to the death of retinal ganglion cells (RGCs). This study investigated the effects of the antiapoptotic peptides peptain-1 and peptain-3a on RGC death in vitro in rat primary RGCs and in mouse models of ocular hypertension. Apoptosis was induced in primary rat RGCs by trophic factor deprivation for 48 h in the presence or absence of peptains. The effects of intravitreally injected peptains on RGC death were investigated in mice subjected to retinal ischemic/reperfusion (I/R) injury and elevated intraocular pressure (IOP). I/R injury was induced in mice by elevating the IOP to 120 mm Hg for 1 h, followed by rapid reperfusion. Ocular hypertension was induced in mice by injecting microbeads (MB) or silicone oil (SO) into the anterior chamber of the eye. Retinal flatmounts were immunostained with RGC and activated glial markers. Effects on anterograde axonal transport were determined by intravitreal injection of cholera toxin-B. Peptain-1 and peptain-3a inhibited neurotrophic factor deprivation-mediated RGC apoptosis by 29% and 35%, respectively. I/R injury caused 52% RGC loss, but peptain-1 and peptain-3a restricted RGC loss to 13% and 16%, respectively. MB and SO injections resulted in 31% and 36% loss in RGCs following 6 weeks and 4 weeks of IOP elevation, respectively. Peptain-1 and peptain-3a inhibited RGC death; the loss was only 4% and 12% in MB-injected eyes and 16% and 15% in SO-injected eyes, respectively. Anterograde transport was defective in eyes with ocular hypertension, but this defect was substantially ameliorated in peptain-injected eyes. Peptains suppressed ocular hypertension-mediated retinal glial activation. In summary, our results showed that peptains block RGC somal and axonal damage and neuroinflammation in animal models of glaucoma. We propose that peptains have the potential to be developed as therapeutics against neurodegeneration in glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Ratas , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Neuroprotección , Presión Intraocular , Hipertensión Ocular/complicaciones , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/metabolismo , Glaucoma/metabolismo , Modelos Animales de Enfermedad
9.
Mol Vis ; 28: 165-177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274816

RESUMEN

Purpose: Glaucoma is a neurodegenerative disease associated with elevated intraocular pressure and characterized by optic nerve axonal degeneration, cupping of the optic disc, and loss of retinal ganglion cells (RGCs). The endothelin (ET) system of vasoactive peptides (ET-1, ET-2, ET-3) and their G-protein coupled receptors (ETA and ETB receptors) have been shown to contribute to the pathophysiology of glaucoma. The purpose of this study was to determine whether administration of the endothelin receptor antagonist macitentan was neuroprotective to RGCs and optic nerve axons when administered after the onset of intraocular pressure (IOP) elevation in ocular hypertensive rats. Methods: Male and female Brown Norway rats were subjected to the Morrison model of ocular hypertension by injection of hypertonic saline through the episcleral veins. Following IOP elevation, macitentan (5 mg/kg body wt) was administered orally 3 days per week, and rats with IOP elevation were maintained for 4 weeks. RGC function was determined by pattern electroretinography (PERG) at 2 and 4 weeks post-IOP elevation. Rats were euthanized by approved humane methods, and retinal flat mounts were generated and immunostained for the RGC-selective marker Brn3a. PPD-stained optic nerve sections were imaged by confocal microscopy. RGC and axon counts were conducted in a masked manner and compared between the treatment groups. Results: Significant protection against loss of RGCs and optic nerve axons was found following oral administration of macitentan in rats with elevated IOP. In addition, a protective trend for RGC function, as measured by pattern ERG analysis, was evident following macitentan treatment. Conclusions: Macitentan treatment had a neuroprotective effect on RGCs and their axons, independent of its IOP-lowering effect, suggesting that macitentan may complement existing treatments to prevent neurodegeneration during ocular hypertension. The findings presented have implications for the use of macitentan as an oral formulation to promote neuroprotection in glaucoma patients.


Asunto(s)
Glaucoma , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Hipertensión Ocular , Masculino , Femenino , Ratas , Animales , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Roedores , Antagonistas de los Receptores de Endotelina/farmacología , Modelos Animales de Enfermedad , Glaucoma/complicaciones , Glaucoma/tratamiento farmacológico , Presión Intraocular , Hipertensión Ocular/complicaciones , Hipertensión Ocular/tratamiento farmacológico , Ratas Endogámicas BN , Axones , Endotelinas/farmacología , Administración Oral , Péptidos/farmacología
10.
Invest Ophthalmol Vis Sci ; 62(6): 13, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33978676

RESUMEN

Purpose: The goal of this study was to determine whether JNK2 played a causative role in endothelin-mediated loss of RGCs in mice. Methods: JNK2-/- and wild type (C57BL/6) mice were intravitreally injected in one eye with 1 nmole of ET-1, whereas the contralateral eye was injected with the vehicle. At two time points (two hours and 24 hours) after the intravitreal injections, mice were euthanized, and phosphorylated c-Jun was assessed in retinal sections. In a separate set of experiments, JNK2-/- and wild type mice were intravitreally injected with either 1 nmole of ET-1 or its vehicle and euthanized seven days after injection. Retinal flat mounts were stained with antibodies to the RGC marker, Brn3a, and surviving RGCs were quantified. Axonal degeneration was assessed in paraphenylenediamine stained optic nerve sections. Results: Intravitreal ET-1 administration produced a significant increase in immunostaining for phospho c-Jun in wild type mice, which was appreciably lower in the JNK2 -/- mice. A significant (P < 0.05) 26% loss of RGCs was found in wild type mice, seven days after injection with ET-1. JNK2-/- mice showed a significant protection from RGC loss following ET-1 administration, compared to wild type mice injected with ET-1. A significant decrease in axonal counts and an increase in the collapsed axons was found in ET-1 injected wild type mice eyes. Conclusions: JNK2 appears to play a major role in ET-1 mediated loss of RGCs in mice. Neuroprotective effects in JNK2-/- mice following ET-1 administration occur mainly in the soma and not in the axons of RGCs.


Asunto(s)
Endotelina-1/toxicidad , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Degeneración Retiniana/inducido químicamente , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Axones/patología , Biomarcadores/metabolismo , Supervivencia Celular , Femenino , Inmunohistoquímica , Inyecciones Intravítreas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nervio Óptico/patología , Fosforilación , Degeneración Retiniana/enzimología , Células Ganglionares de la Retina/enzimología , Factor de Transcripción Brn-3A/metabolismo
11.
Mol Vis ; 27: 37-49, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633438

RESUMEN

Purpose: Glaucoma is a neurodegenerative disease of the eye with an estimated prevalence of more than 111.8 million patients worldwide by 2040, with at least 6 to 8 million projected to become bilaterally blind. Clinically, the current method of slowing glaucomatous vision loss is to reduce intraocular pressure (IOP). In this manuscript, we describe the in vitro cytoprotective and in vivo long lasting IOP-lowering activity of the poly D, L-lactic-co-glycolic acid (PLGA) nanoparticle-encapsulated hybrid compound SA-2, possessing nitric oxide (NO) donating and superoxide radical scavenging functionalities. Methods: Previously characterized primary human trabecular meshwork (hTM) cells were used for the study. hTM cells were treated with SA-2 (100 µM, 200 µM, and 1,000 µM), SA-2 PLGA-loaded nanosuspension (SA-2 NPs, 0.1%), or vehicle for 30 min. Cyclic guanosine monophosphate (cGMP) and super oxide dismutase (SOD) levels were analyzed using commercial kits. In another experiment, hTM cells were pretreated with tert-butyl hydrogen peroxide (TBHP, 300 µM) for 30 min followed by treatment with escalating doses of SA-2 for 24 h, and CellTiter 96 cell proliferation assay was performed. For the biodistribution study, the cornea, aqueous humor, vitreous humor, retina, choroid, and sclera were collected after 1 h of administration of a single eye drop (30 µl) of SA-2 NPs (1% w/v) formulated in PBS to rat (n = 6) eyes. Compound SA-2 was quantified using high performance liquid chromatography /mass spectrometry (HPLC/MS). For the IOP-lowering activity study, a single SA-2 NPs (1%) eye drop was instilled in normotensive rats eyes and in the IOP-elevated rat eyes (n = 3/group, in the Morrison model of glaucoma), or Ad5TGFß2-induced ocular hypertensive (OHT) mouse eyes (n = 5/group). IOP was measured at various time points up to 72 h, and the experiment was repeated in triplicate. Mouse aqueous humor outflow facility was determined with multiple flow-rate infusion and episcleral venous pressure estimated with manometry. Results: SA-2 upregulated cGMP levels (six- to ten-fold) with an half maximal effective concentration (EC50) of 20.3 µM in the hTM cells and simultaneously upregulated (40-fold) the SOD enzyme when compared with the vehicle-treated hTM cells. SA-2 also protected hTM cells from TBHP-induced decrease in cell survival with an EC50 of 0.38 µM. A single dose of slow-release SA-2 NPs (1% w/v) delivered as an eye drop significantly lowered IOP (by 30%) in normotensive and OHT rodent eyes after 3 h post-dose, with the effect lasting up to 72 h. A statistically significant increase in aqueous outflow facility and a decrease in episcleral venous pressure was observed in rodents at this dose at 54 h. Conclusions: Hybrid compound SA-2 upregulated cGMP in hTM cells, increased outflow facility and decreased IOP in rodent models of OHT. Compound SA-2 possessing an antioxidant moiety provided additive cytoprotective activity to oxidatively stressed hTM cells by scavenging reactive oxygen species (ROS) and increasing SOD enzyme activity. Additionally, the PLGA nanosuspension formulation (SA-2 NPs) provided longer duration of IOP-lowering activity (up to 3 days) in comparison with the free non-encapsulated SA-2 drug. The data have implications for developing novel, non-prostaglandin therapeutics for IOP-lowering and cytoprotective effects with the possibility of an eye drop dosing regimen of once every 3 days for patients with glaucoma.


Asunto(s)
Antihipertensivos/uso terapéutico , Modelos Animales de Enfermedad , Presión Intraocular/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Piperidinas/uso terapéutico , Malla Trabecular/efectos de los fármacos , Administración Oftálmica , Adulto , Anciano de 80 o más Años , Animales , Antihipertensivos/farmacocinética , Antihipertensivos/farmacología , Humor Acuoso/fisiología , Disponibilidad Biológica , Células Cultivadas , GMP Cíclico/metabolismo , Portadores de Fármacos , Femenino , Depuradores de Radicales Libres/farmacocinética , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Glicolatos/química , Humanos , Masculino , Ratones Endogámicos C57BL , Donantes de Óxido Nítrico/farmacocinética , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Hipertensión Ocular/metabolismo , Soluciones Oftálmicas , Piperidinas/farmacocinética , Piperidinas/farmacología , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Esclerótica/irrigación sanguínea , Superóxido Dismutasa/metabolismo , Distribución Tisular , Malla Trabecular/metabolismo , Presión Venosa/fisiología
12.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151061

RESUMEN

BACKGROUND: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. METHODS: We injected KYNA intravenously or intravitreally to mice. We generated a knockout mouse strain of kynurenine 3-monooxygenase (KMO), an enzyme in the kynurenine pathway that produces neurotoxic 3-hydroxykynurenine. To test the effect of mild hyperglycemia on RGC protection, we used streptozotocin (STZ) induced diabetic mice. Retinal I/R injury was induced by increasing intraocular pressure for 60 min followed by reperfusion and RGC numbers were counted in the retinal flat mounts. RESULTS: Intravenous or intravitreal administration of KYNA protected RGCs against I/R injury. The I/R injury caused a greater loss of RGCs in wild type than in KMO knockout mice. KMO knockout mice had mildly higher levels of fasting blood glucose than wild type mice. Diabetic mice showed significantly lower loss of RGCs when compared with non-diabetic mice subjected to I/R injury. CONCLUSION: Together, our study suggests that the absence of KMO protects RGCs against I/R injury, through mechanisms that likely involve higher levels of KYNA and glucose.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Modelos Animales de Enfermedad , Glaucoma/prevención & control , Ácido Quinurénico/farmacología , Quinurenina 3-Monooxigenasa/fisiología , Daño por Reperfusión/complicaciones , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Glaucoma/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
13.
Sci Rep ; 10(1): 3571, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107448

RESUMEN

Endothelin-1 (ET-1) is a vasoactive peptide that is elevated in aqueous humor as well as circulation of primary open angle glaucoma (POAG) patients. ET-1 has been shown to promote degeneration of optic nerve axons and apoptosis of retinal ganglion cells (RGCs), however, the precise mechanisms are still largely unknown. In this study, RNA-seq analysis was used to assess changes in ET-1 mediated gene expression in primary RGCs, which revealed that 23 out of 156 differentially expressed genes (DEGs) had known or predicted mitochondrial function, of which oxidative phosphorylation emerged as the top-most enriched pathway. ET-1 treatment significantly decreased protein expression of key mitochondrial genes including cytochrome C oxidase copper chaperone (COX17) and ATP Synthase, H+ transporting, Mitochondrial Fo Complex (ATP5H) in primary RGCs and in vivo following intravitreal ET-1 injection in rats. A Seahorse ATP rate assay revealed a significant decrease in the rate of mitochondrial ATP production following ET-1 treatment. IOP elevation in Brown Norway rats showed a trend towards decreased expression of ATP5H. Our results demonstrate that ET-1 produced a decrease in expression of vital components of mitochondrial electron transport chain, which compromise bioenergetics and suggest a mechanism by which ET-1 promotes neurodegeneration of RGCs in glaucoma.


Asunto(s)
Endotelina-1/metabolismo , Glaucoma/metabolismo , Mitocondrias/genética , Células Ganglionares de la Retina/metabolismo , Animales , Proteínas Transportadoras de Cobre/genética , Proteínas Transportadoras de Cobre/metabolismo , Modelos Animales de Enfermedad , Endotelina-1/genética , Metabolismo Energético , Femenino , Expresión Génica , Glaucoma/genética , Glaucoma/fisiopatología , Humanos , Masculino , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Degeneración Nerviosa , Ratas , Ratas Endogámicas BN
15.
Invest Ophthalmol Vis Sci ; 60(8): 3064-3073, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31348824

RESUMEN

Purpose: Determine the toxicity, bioavailability in the retina, and neuroprotective effects of a hybrid antioxidant-nitric oxide donor compound SA-2 against oxidative stress-induced retinal ganglion cell (RGC) death in neurodegenerative animal models. Methods: Optic nerve crush (ONC) and ischemia reperfusion (I/R) injury models were used in 12-week-old C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mice were treated intravitreally with either vehicle or SA-2. Retinal thickness was measured by spectral-domain optical coherence tomography (SD-OCT). The electroretinogram and pattern ERG (PERG) were used to assess retinal function. RGC survival was determined by counting RBPMS-positive RGCs and immunohistochemical analysis of superoxide dismutase 1 (SOD1) levels was carried out in the retina sections. Concentrations of SA-2 in the retina and choroid were determined using HPLC and MS. In addition, the direct effect of SA-2 treatment on RGC survival was assessed in ex vivo rat retinal explants under hypoxic (0.5% O2) conditions. Results: Compound SA-2 did not induce any appreciable change in retinal thickness, or in a- or b-wave amplitude in naive animals. SA-2 was found to be bioavailable in both the retina and choroid after a single intravitreal injection (2% wt/vol). An increase in SOD1 levels in the retina of mice subjected to ONC and SA-2 treatment, suggests an enhancement in antioxidant activity. SA-2 provided significant (P < 0.05) RGC protection in all three of the tested RGC injury models in rodents. PERG amplitudes were significantly higher in both I/R and ONC mouse eyes following SA-2 treatment (P ≤ 0.001) in comparison with the vehicle and control groups. Conclusions: Compound SA-2 was effective in preventing RGC death and loss of function in three different rodent models of acute RGC injury: ONC, I/R, and hypoxia.


Asunto(s)
Neuroprotección/efectos de los fármacos , Donantes de Óxido Nítrico/farmacocinética , Estrés Oxidativo , Degeneración Retiniana/tratamiento farmacológico , Células Ganglionares de la Retina/patología , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Ganglionares de la Retina/metabolismo , Tomografía de Coherencia Óptica
16.
Cell Death Discov ; 5: 112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285855

RESUMEN

Axonal degeneration and death of retinal ganglion cells (RGCs) are the primary causes of vision loss in glaucoma. In this study, we evaluated the efficacy of a peptide (peptain-1) that exhibits robust chaperone and anti-apoptotic activities against RGC loss in two rodent models and in cultured RGCs. In cultures of rat primary RGCs and in rat retinal explants peptain-1 significantly decreased hypoxia-induced RGC loss when compared to a scrambled peptide. Intraperitoneally (i.p.) injected peptain-1 (conjugated to a Cy7 fluorophore) was detected in the retina indicative of its ability to cross the blood-retinal barrier. Peptain-1 treatment inhibited RGC loss in the retina of mice subjected to ischemia/reperfusion (I/R) injury. A reduction in anterograde axonal transport was also ameliorated by peptain-1 treatment in the retina of I/R injured mice. Furthermore, i.p. injections of peptain-1 significantly reduced RGC death and axonal loss and partially restored retinal mitochondrial cytochrome c oxidase subunit 6b2 (COX 6b2) levels in rats subjected to five weeks of elevated intraocular pressure. We conclude that i.p. injected peptain-1 gains access to the retina and protects both RGC somas and axons against the injury caused by I/R and ocular hypertension. Based on these findings, peptain-1 has the potential to be developed as an efficacious neuroprotective agent for the treatment of glaucoma.

17.
Curr Eye Res ; 43(1): 84-95, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29111855

RESUMEN

PURPOSE: The purpose of the current study was to assess the potential involvement of acid-sensing ion channel 1 (ASIC1) in retinal ganglion cell (RGC) death and investigate the neuroprotective effects of inhibitors of ASICs in promoting RGC survival following optic nerve crush (ONC). RESULTS: ASIC1 protein was significantly increased in optic nerve extracts at day 7 following ONC in rats. Activated calpain-1 increased at 2 and 7 days following ONC as evidenced by increased degradation of α-fodrin, known substrate of calpain. Glial fibrillary acidic protein levels increased significantly at 2 and 7 days post-injury. By contrast, glutamine synthetase increased at 2 days while decreased at 7 days. The inhibition of ASICs with amiloride and psalmotoxin-1 significantly increased RGC survival in rats following ONC (p < 0.05, one-way ANOVA). The mean number of surviving RGCs in rats (n = 6) treated with amiloride (100 µM) following ONC was 1477 ± 98 cells/mm2 compared with ONC (1126 ± 101 cells/mm2), where psalmotoxin-1 (1 µM) treated rats (n = 6) and subjected to ONC had 1441 ± 63 RGCs/mm2 compared with ONC (1065 ± 76 RGCs/mm2). Average number of RGCs in control rats (n = 12) was 2092 ± 46 cells/mm2. Blocking of ASICs also significantly increased RGC survival from ischemic-like insult from 473 ± 80 to 842 ± 49 RGCs/mm2 (for psalmotoxin-1) and from 628 ± 53 RGCs/mm2 to 890 ± 55 RGCs/mm2 (for amiloride) with p ≤ 0.05, using one-way ANOVA. Acidification (a known activator of ASIC1) increased intracellular Ca2+ ([Ca2+]i) in rat primary RGCs, which was statistically blocked by pretreatment with 100 nM psalmotoxin-1. CONCLUSIONS: ASIC1 up-regulation-induced influx of extracellular calcium may be responsible for activation of calcium-sensitive calpain-1 in the retina. Calpain-1 induced degradation of α-fodrin and leads to morphological changes and eventually neuronal death. Therefore, blockers of ASIC1 can be used as potential therapeutics in the treatment of optic nerve degeneration. ABBREVIATIONS: 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF); acid-sensing ion channels (ASICs); analysis of variance (ANOVA); bicinchoninic acid (BCA); brain-derived neurotrophic factor (BDNF); central nervous system (CNS); ciliary neurotrophic factor (CNTF); dimethyl sulfoxide (DMSO); endoplasmic reticulum (ER); ethylene glycol-bis(ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA); ethylenediaminetetraacetic acid (EDTA); Food and Drug Administration (FDA); glial fibrillary acidic protein (GFAP); glutamine synthetase (GS); intraocular pressure (IOP); kilodalton (kDa); Krebs-Ringer Buffer (KRB); optic nerve crush (ONC); phosphate-buffered saline (PBS); plasma membrane (PM); polymerase chain reaction (PCR); retinal ganglion cell (RGC); RNA Binding Protein With Multiple Splicing (RBPMS); room temperature (RT); standard error of the mean (SEM).


Asunto(s)
Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Amilorida/farmacología , Apoptosis , Neuroprotección , Traumatismos del Nervio Óptico/tratamiento farmacológico , Células Ganglionares de la Retina/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Ratas , Ratas Wistar , Células Ganglionares de la Retina/metabolismo
18.
J Ocul Pharmacol Ther ; 34(1-2): 85-106, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28820649

RESUMEN

Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.


Asunto(s)
Glaucoma/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Soluciones Oftálmicas/farmacología , Animales , Glaucoma/cirugía , Humanos , Presión Intraocular/efectos de los fármacos , Enfermedades Neurodegenerativas/cirugía
19.
BMC Neurosci ; 18(1): 27, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28249604

RESUMEN

BACKGROUND: Primary open angle glaucoma is a heterogeneous group of optic neuropathies that results in optic nerve degeneration and a loss of retinal ganglion cells (RGCs) ultimately causing blindness if allowed to progress. Elevation of intraocular pressure (IOP) is the most attributable risk factor for developing glaucoma and lowering of IOP is currently the only available therapy. However, despite lowering IOP, neurodegenerative effects persist in some patients. Hence, it would be beneficial to develop approaches to promote neuroprotection of RGCs in addition to IOP lowering therapies. The endothelin system is a key target for intervention against glaucomatous neurodegeneration. The endothelin family of peptides and receptors, particularly endothelin-1 (ET-1) and endothelin B (ETB) receptor, has been shown to have neurodegenerative roles in glaucoma. The purpose of this study was to examine changes in endothelin A (ETA) receptor protein expression in the retinas of adult male Brown Norway rats following IOP elevation by the Morrison's model of ocular hypertension and the impact of ETA receptor overexpression on RGC viability in vitro. RESULTS: IOP elevation was carried out in one eye of Brown Norway rats by injection of hypertonic saline through episcleral veins. After 2 weeks of IOP elevation, immunohistochemical analysis of retinal sections from rat eyes showed an increasing trend in immunostaining for ETA receptors in multiple retinal layers including the inner plexiform layer, ganglion cell layer and outer plexiform layer. Following 4 weeks of IOP elevation, a significant increase in immunostaining for ETA receptor expression was found in the retina, primarily in the inner plexiform layer and ganglion cells. A modest increase in staining for ETA receptors was also found in the outer plexiform layer in the retina of rats with IOP elevation. Cell culture studies showed that overexpression of ETA receptors in 661W cells as well as primary RGCs decreases cell viability, compared to empty vector transfected cells. Adeno-associated virus mediated overexpression of the ETA receptor produced an increase in the ETB receptor in primary RGCs. CONCLUSIONS: Elevated IOP results in an appreciable change in ETA receptor expression in the retina. Overexpression of the ETA receptor results in an overall decrease in cell viability, accompanied by an increase in ETB receptor levels, suggesting the involvement of both ETA and ETB receptors in mediating cell death. These findings raise possibilities for the development of ETA/ETB dual receptor antagonists as neuroprotective treatments for glaucomatous neuropathy.


Asunto(s)
Glaucoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Receptor de Endotelina A/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Glaucoma/patología , Presión Intraocular/fisiología , Masculino , Enfermedades Neurodegenerativas/patología , Neuroprotección/fisiología , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Receptor de Endotelina A/genética , Receptor de Endotelina B/metabolismo , Células Ganglionares de la Retina/patología , Transfección , Regulación hacia Arriba
20.
Nutr Neurosci ; 20(5): 273-283, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26651837

RESUMEN

OBJECTIVES: Alzheimer's disease is a progressive neurodegenerative disease characterized by loss of hippocampal neurons leading to memory deficits and cognitive decline. Studies suggest that levels of the vasoactive peptide endothelin-1 (ET-1) are increased in the brain tissue of Alzheimer's patients. Curcumin, the main ingredient of the spice turmeric, has been shown to have anti-inflammatory, anti-cancer, and neuroprotective effects. However, the mechanisms underlying some of these beneficial effects are not completely understood. The objective of this study was to determine if curcumin could protect hippocampal neurons from ET-1 mediated cell death and examine the involvement of c-Jun in this pathway. METHODS: Primary hippocampal neurons from rat pups were isolated using a previously published protocol. Viability of the cells was measured by the live/dead assay. Immunoblot and immunohistochemical analyses were performed to analyze c-Jun levels in hippocampal neurons treated with either ET-1 or a combination of ET-1 and curcumin. Apoptotic changes were evaluated by immunoblot detection of cleaved caspase-3, cleaved fodrin, and a caspase 3/7 activation assay. RESULTS: ET-1 treatment produced a 2-fold increase in the levels of c-Jun as determined by an immunoblot analysis in hippocampal neurons. Co-treatment with curcumin significantly attenuated the ET-1 mediated increase in c-Jun levels. ET-1 caused increased neuronal cell death of hippocampal neurons indicated by elevation of cleaved caspase-3, cleaved fodrin and an increased activity of caspases 3 and 7 which was attenuated by co-treatment with curcumin. Blockade of JNK, an upstream effector of c-Jun by specific inhibitor SP600125 did not fully protect from ET-1 mediated activation of pro-apoptotic enzymes in primary hippocampal cells. DISCUSSION: Our data suggests that one mechanism by which curcumin protects against ET-1-mediated cell death is through blocking an increase in c-Jun levels. Other possible mechanisms include decreasing pro-apoptotic signaling activated by ET-1 in primary hippocampal neurons.


Asunto(s)
Muerte Celular/efectos de los fármacos , Curcumina/farmacología , Endotelina-1/farmacología , Hipocampo/citología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores , Enfermedad de Alzheimer , Animales , Apoptosis/efectos de los fármacos , Proteínas Portadoras/análisis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Células Cultivadas , Hipocampo/química , Proteínas de Microfilamentos/análisis , Neuronas/química , Proteínas Proto-Oncogénicas c-jun/análisis , Proteínas Proto-Oncogénicas c-jun/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...