Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1394697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665300

RESUMEN

Across species, taste provides important chemical information about potential food sources and the surrounding environment. As details about the chemicals and receptors responsible for gustation are discovered, a complex view of the taste system is emerging with significant contributions from research using the fruit fly, Drosophila melanogaster, as a model organism. In this brief review, we summarize recent advances in Drosophila gustation and their relevance to taste research more broadly. Our goal is to highlight the molecular mechanisms underlying the first step of gustatory circuits: ligand-receptor interactions in primary taste cells. After an introduction to the Drosophila taste system and how it encodes the canonical taste modalities sweet, bitter, and salty, we describe recent insights into the complex nature of carboxylic acid and amino acid detection in the context of sour and umami taste, respectively. Our analysis extends to non-canonical taste modalities including metals, fatty acids, and bacterial components, and highlights unexpected receptors and signaling pathways that have recently been identified in Drosophila taste cells. Comparing the intricate molecular and cellular underpinnings of how ligands are detected in vivo in fruit flies reveals both specific and promiscuous receptor selectivity for taste encoding. Throughout this review, we compare and contextualize these Drosophila findings with mammalian research to not only emphasize the conservation of these chemosensory systems, but to demonstrate the power of this model organism in elucidating the neurobiology of taste and feeding.

2.
JCI Insight ; 8(10)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129980

RESUMEN

Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-ß (Aß) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aß pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aß, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aß pathology in patients with diabetes or prediabetes.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Ratones , Animales , Canales KATP/metabolismo , Enfermedad de Alzheimer/patología , Diabetes Mellitus Tipo 2/complicaciones , Glucosa , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
3.
Curr Biol ; 32(14): 3070-3081.e5, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35772408

RESUMEN

Dietary salt detection and consumption are crucial to maintaining fluid and ionic homeostasis. To optimize salt intake, animals employ salt-dependent activation of multiple taste pathways. Generally, sodium activates attractive taste cells, but attraction is overridden at high salt concentrations by cation non-selective activation of aversive taste cells. In flies, high salt avoidance is driven by both "bitter" taste neurons and a class of glutamatergic "high salt" neurons expressing pickpocket23 (ppk23). Although the cellular basis of salt taste has been described, many of the molecular mechanisms remain elusive. Here, we show that ionotropic receptor 7c (IR7c) is expressed in glutamatergic high salt neurons, where it functions with co-receptors IR76b and IR25a to detect high salt and is essential for monovalent salt taste. Misexpression of IR7c in sweet neurons, which endogenously express IR76b and IR25a, confers responsiveness to non-sodium salts, indicating that IR7c is sufficient to convert a sodium-selective gustatory receptor neuron to a cation non-selective one. Furthermore, the resultant transformation of taste neuron tuning switches potassium chloride from an aversive to an attractive tastant. This research provides insight into the molecular basis of monovalent and divalent salt-taste coding.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Cloruro de Sodio/farmacología , Gusto/fisiología , Percepción del Gusto/fisiología
4.
Curr Biol ; 31(16): 3525-3537.e6, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34197729

RESUMEN

Sour has been studied almost exclusively as an aversive taste modality. Yet recent work in Drosophila demonstrates that specific carboxylic acids are attractive at ecologically relevant concentrations. Here, we demonstrate that lactic acid is an appetitive and energetic tastant, which stimulates feeding through activation of sweet gustatory receptor neurons (GRNs). This activation displays distinct, mechanistically separable stimulus onset and removal phases. Ionotropic receptor 25a (IR25a) primarily mediates the onset response, which shows specificity for the lactate anion and drives feeding initiation through proboscis extension. Conversely, sweet gustatory receptors (Gr64a-f) mediate a non-specific removal response to low pH that primarily impacts ingestion. While mutations in either receptor family have marginal impacts on feeding, lactic acid attraction is completely abolished in combined mutants. Thus, specific components of lactic acid are detected through two classes of receptors to activate a single set of sensory neurons in physiologically distinct ways, ultimately leading to robust behavioral attraction.


Asunto(s)
Drosophila melanogaster , Ácido Láctico , Receptores de Superficie Celular , Células Receptoras Sensoriales , Gusto , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Receptores de Superficie Celular/genética , Células Receptoras Sensoriales/fisiología
5.
Cell Calcium ; 91: 102259, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32739609

RESUMEN

In their recent paper, Li and colleagues discover that cold food tastes less sweet to flies, in part by activating bitter sensory neurons through a rhodopsin-dependent mechanism [1]. This work establishes temperature as an important variable in understanding fly taste processing and adds diversity to the sensory roles for rhodopsin receptors.


Asunto(s)
Drosophila , Gusto , Animales , Drosophila melanogaster , Rodopsina , Temperatura
6.
Elife ; 72018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30307393

RESUMEN

Each taste modality is generally encoded by a single, molecularly defined, population of sensory cells. However, salt stimulates multiple taste pathways in mammals and insects, suggesting a more complex code for salt taste. Here, we examine salt coding in Drosophila. After creating a comprehensive molecular map comprised of five discrete sensory neuron classes across the fly labellum, we find that four are activated by salt: two exhibiting characteristics of 'low salt' cells, and two 'high salt' classes. Behaviorally, low salt attraction depends primarily on 'sweet' neurons, with additional input from neurons expressing the ionotropic receptor IR94e. High salt avoidance is mediated by 'bitter' neurons and a population of glutamatergic neurons expressing Ppk23. Interestingly, the impact of these glutamatergic neurons depends on prior salt consumption. These results support a complex model for salt coding in flies that combinatorially integrates inputs from across cell types to afford robust and flexible salt behaviors.


Asunto(s)
Drosophila melanogaster/fisiología , Cloruro de Sodio/farmacología , Gusto/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Calcio/metabolismo , Drosophila melanogaster/anatomía & histología , Modelos Biológicos , Feromonas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Toxina Tetánica/farmacología
7.
Proc Natl Acad Sci U S A ; 114(45): E9665-E9674, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078331

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by pathological brain lesions and a decline in cognitive function. ß-Amyloid peptides (Aß), derived from proteolytic processing of amyloid precursor protein (APP), play a central role in AD pathogenesis. ß-Site APP cleaving enzyme 1 (BACE1), the transmembrane aspartyl protease which initiates Aß production, is axonally transported in neurons and accumulates in dystrophic neurites near cerebral amyloid deposits in AD. BACE1 is modified by S-palmitoylation at four juxtamembrane cysteine residues. S-palmitoylation is a dynamic posttranslational modification that is important for trafficking and function of several synaptic proteins. Here, we investigated the in vivo significance of BACE1 S-palmitoylation through the analysis of knock-in mice with cysteine-to-alanine substitution at the palmitoylated residues (4CA mice). BACE1 expression, as well as processing of APP and other neuronal substrates, was unaltered in 4CA mice despite the lack of BACE1 S-palmitoylation and reduced lipid raft association. Whereas steady-state Aß levels were similar, synaptic activity-induced endogenous Aß production was not observed in 4CA mice. Furthermore, we report a significant reduction of cerebral amyloid burden and BACE1 accumulation in dystrophic neurites in the absence of BACE1 S-palmitoylation in mouse models of AD amyloidosis. Studies in cultured neurons suggest that S-palmitoylation is required for dendritic spine localization and axonal targeting of BACE1. Finally, the lack of BACE1 S-palmitoylation mitigates cognitive deficits in 5XFAD mice. Using transgenic mouse models, these results demonstrate that intrinsic posttranslational S-palmitoylation of BACE1 has a significant impact on amyloid pathogenesis and the consequent cognitive decline.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Trastornos de la Memoria/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloidosis/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Lipoilación/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología
8.
J Neurosci ; 36(46): 11704-11715, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852778

RESUMEN

Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-ß (Aß), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aß compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aß was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aß, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aß in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aß in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aß in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT: The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aß, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aß. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment.


Asunto(s)
Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Insulina/sangre , Resistencia a la Insulina , Masculino , Ratones , Ratones Transgénicos , Presenilina-1/genética , Transducción de Señal
9.
J Exp Med ; 213(8): 1375-85, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27432942

RESUMEN

Individuals with type 2 diabetes have an increased risk for developing Alzheimer's disease (AD), although the causal relationship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils of amyloid-ß (Aß) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for AD. Conversely, elevated insulin levels (ins) are found in AD patients and high insulin has been reported to increase Aß levels and tau phosphorylation, which could exacerbate AD pathology. Herein, we explore whether changes in ins and IS are a cause or consequence of AD.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulina/uso terapéutico , Transducción de Señal/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Proteínas tau/metabolismo
10.
J Neurosci ; 36(6): 1871-8, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26865611

RESUMEN

Aerobic glycolysis and lactate production in the brain plays a key role in memory, yet the role of this metabolism in the cognitive decline associated with Alzheimer's disease (AD) remains poorly understood. Here we examined the relationship between cerebral lactate levels and memory performance in an APP/PS1 mouse model of AD, which progressively accumulates amyloid-ß. In vivo (1)H-magnetic resonance spectroscopy revealed an age-dependent decline in lactate levels within the frontal cortex of control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 months of age. Analysis of hippocampal interstitial fluid by in vivo microdialysis revealed a significant elevation in lactate levels in APP/PS1 mice relative to control mice at 12 months of age. An age-dependent decline in the levels of key aerobic glycolysis enzymes and a concomitant increase in lactate transporter expression was detected in control mice. Increased expression of lactate-producing enzymes correlated with improved memory in control mice. Interestingly, in APP/PS1 mice the opposite effect was detected. In these mice, increased expression of lactate producing enzymes correlated with poorer memory performance. Immunofluorescent staining revealed localization of the aerobic glycolysis enzymes pyruvate dehydrogenase kinase and lactate dehydrogenase A within cortical and hippocampal neurons in control mice, as well as within astrocytes surrounding amyloid plaques in APP/PS1 mice. These observations collectively indicate that production of lactate, via aerobic glycolysis, is beneficial for memory function during normal aging. However, elevated lactate levels in APP/PS1 mice indicate perturbed lactate processing, a factor that may contribute to cognitive decline in AD. SIGNIFICANCE STATEMENT: Lactate has recently emerged as a key metabolite necessary for memory consolidation. Lactate is the end product of aerobic glycolysis, a unique form of metabolism that occurs within certain regions of the brain. Here we detected an age-dependent decline in the expression of aerobic glycolysis enzymes and a concomitant decrease in lactate levels within the frontal cortex of wild-type mice. Improved memory performance in wild-type mice correlated with elevated expression of aerobic glycolysis enzymes. Surprisingly, lactate levels remained elevated with age and increased aerobic glycolysis enzyme expression correlated with poorer memory performance in APP/PS1 mice. These findings suggest that while lactate production is beneficial for memory in the healthy aging brain, it might be detrimental in an Alzheimer's disease context.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Amiloidosis/genética , Amiloidosis/metabolismo , Lóbulo Frontal/metabolismo , Glucólisis/fisiología , Memoria/fisiología , Presenilina-1/genética , Desempeño Psicomotor/fisiología , Aerobiosis/fisiología , Envejecimiento/metabolismo , Animales , Astrocitos/enzimología , Astrocitos/metabolismo , Química Encefálica/genética , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Ratones Endogámicos C57BL , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos/metabolismo
11.
J Clin Invest ; 125(6): 2463-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25938784

RESUMEN

Epidemiological studies show that patients with type 2 diabetes (T2DM) and individuals with a diabetes-independent elevation in blood glucose have an increased risk for developing dementia, specifically dementia due to Alzheimer's disease (AD). These observations suggest that abnormal glucose metabolism likely plays a role in some aspects of AD pathogenesis, leading us to investigate the link between aberrant glucose metabolism, T2DM, and AD in murine models. Here, we combined two techniques ­ glucose clamps and in vivo microdialysis ­ as a means to dynamically modulate blood glucose levels in awake, freely moving mice while measuring real-time changes in amyloid-ß (Aß), glucose, and lactate within the hippocampal interstitial fluid (ISF). In a murine model of AD, induction of acute hyperglycemia in young animals increased ISF Aß production and ISF lactate, which serves as a marker of neuronal activity. These effects were exacerbated in aged AD mice with marked Aß plaque pathology. Inward rectifying, ATP-sensitive potassium (K(ATP)) channels mediated the response to elevated glucose levels, as pharmacological manipulation of K(ATP) channels in the hippocampus altered both ISF Aß levels and neuronal activity. Taken together, these results suggest that K(ATP) channel activation mediates the response of hippocampal neurons to hyperglycemia by coupling metabolism with neuronal activity and ISF Aß levels.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Complicaciones de la Diabetes/metabolismo , Hipocampo/metabolismo , Hiperglucemia/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/patología , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hipocampo/patología , Humanos , Hiperglucemia/genética , Hiperglucemia/patología , Canales KATP/genética , Canales KATP/metabolismo , Ratones , Ratones Transgénicos , Neuronas/patología
12.
Eur Endocrinol ; 10(1): 14-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29872458

RESUMEN

The hippocampus plays an important role in human memory and is known to be vulnerable to extreme hyperglycaemia and hypoglycaemia in animal models of type 1 diabetes. Within humans with type 1 diabetes, exposure to glycaemic extremes has been associated with alterations in hippocampal structure and in memory function, but results are inconsistent. It has been hypothesised that the effects of hypoglycaemia and hyperglycaemia on the hippocampus may depend on when during neurodevelopment these extremes occur, possibly explaining some of these inconsistencies. However, data addressing this concept are limited. We review here the existing literature on this complex topic and suggest future avenues of required research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA