Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Mol Pharm ; 18(12): 4428-4436, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34649437

RESUMEN

Type 1 diabetes develops in childhood and adolescence, with peak incidence in the early teenage years. There is an urgent need for an accurate method to detect insulin-producing ß-cells in patients that is not affected by alterations in ß-cell function. As part of our research program to design specific probes to measure ß-cell mass, we recently developed a novel insulin-binding peptide probe (IBPP) for the detection of ß-cells in vivo. Here, we applied our innovative method to show specific labeling of this IBPP to human and mouse fixed ß-cells in pancreatic islets. Importantly, we showed staining of human and mouse islets in culture without any negative functional or cell viability impact. Moreover, the IBPP-stained mouse islets after tail vein injection in vivo, albeit with batch differences in staining efficiency. In conclusion, we provide evidence showing that the IBPP can be used for future accurate detection of ß-cell mass in a variety of preclinical models of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/diagnóstico por imagen , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Células Cultivadas , Humanos , Insulina/análisis , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Coloración y Etiquetado
2.
J Am Heart Assoc ; 10(4): e017791, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33533257

RESUMEN

Background Mitogen-activated protein kinase-activated protein kinase-2 (MK2) is a protein serine/threonine kinase activated by p38α/ß. Herein, we examine the cardiac phenotype of pan MK2-null (MK2-/-) mice. Methods and Results Survival curves for male MK2+/+ and MK2-/- mice did not differ (Mantel-Cox test, P=0.580). At 12 weeks of age, MK2-/- mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R-R interval and P-R segment durations were prolonged in MK2-deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2-/- mice. MK2-/- mice had lower body temperature and an age-dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2-/- mice. For equivalent respiration rates, mitochondria from MK2-/- hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2-/- mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2-/- mice. Finally, the pressure overload-induced decrease in systolic function was attenuated in MK2-/- mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.


Asunto(s)
Presión Sanguínea/fisiología , Bradicardia/fisiopatología , Cardiomiopatía Hipertrófica/fisiopatología , Frecuencia Cardíaca/fisiología , Mitocondrias Cardíacas/metabolismo , Función Ventricular Izquierda/fisiología , Remodelación Ventricular , Animales , Bradicardia/diagnóstico , Bradicardia/metabolismo , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/deficiencia
3.
PLoS One ; 14(11): e0225985, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31770422

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0162009.].

4.
Vector Borne Zoonotic Dis ; 19(12): 950-953, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31355714

RESUMEN

Orthohantaviruses are RNA viruses that some members are known to cause severe zoonotic diseases in humans. Orthohantaviruses are hosted by rodents, soricomorphs (shrews and moles), and bats. Only two orthohantaviruses associated with murid rodents are known in Africa, Sangassou orthohantavirus (SANGV) in two species of African wood mice (Hylomyscus), and Tigray orthohantavirus (TIGV) in the Ethiopian white-footed rat (Stenocephalemys albipes). In this article, we report evidence that, like SANGV, two strains of TIGV occur in two genetically related rodent species, S. albipes and S. sp. A, occupying different elevational zones in the same mountain. Investigating the other members of the genus Stenocephalemys for TIGV could reveal the real diversity of TIGV in the genus.


Asunto(s)
Infecciones por Hantavirus/veterinaria , Orthohantavirus/genética , Enfermedades de los Roedores/virología , Animales , Etiopía/epidemiología , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/virología , Humanos , Filogenia , Enfermedades de los Roedores/epidemiología , Roedores , Especificidad de la Especie
5.
Can J Microbiol ; 64(9): 629-637, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30169128

RESUMEN

Growth of two dissimilatory sulfate-reducing bacteria, Desulfosporosinus orientis (gram-positive) and Desulfovibrio desulfuricans (gram-negative), in a chemically defined culture medium resulted in similar growth rates (doubling times for each culture = 2.8 h) and comparable rates of H2S generation (D. orientis = 0.19 nmol/L S2- per cell per h; D. desulfuricans = 0.12 nmol/L S2- per cell per h). Transmission electron microscopy of whole mounts and thin sections revealed that the iron sulfide mineral precipitates produced by the two cultures were morphologically different. The D. orientis culture flocculated, with the minerals occurring as subhedral plate-like precipitates, which nucleated on the cell wall during exponential growth producing extensive mineral aggregates following cell autolysis and endospore release. In contrast, the D. desulfuricans culture produced fine-grained colloidal or platy iron sulfide precipitates primarily within the bulk solution. Mineral analysis by scanning electron microscopy - energy dispersive spectroscopy indicated that neither culture promoted advanced mineral development beyond a 1:1 Fe:S stoichiometry. This analysis did not detect pyrite (FeS2). The average Fe:S ratios were 1 : 1.09 ± 0.03 at 24 h and 1 : 1.08 ± 0.03 at 72 h for D. orientis and 1 : 1.05 ± 0.02 at 24 h and 1 : 1.09 ± 0.07 at 72 h for D. desulfuricans. The formation of "biogenic" iron sulfides by dissimilatory sulfate-reducing bacteria is influenced by bacterial cell surface structure, chemistry, and growth strategy, i.e., mineral aggregation occurred with cell autolysis of the gram-positive bacterium.


Asunto(s)
Desulfovibrio desulfuricans/metabolismo , Hierro/metabolismo , Minerales/química , Peptococcaceae/metabolismo , Sulfuros/metabolismo , Bacteriólisis , Pared Celular/ultraestructura , Hierro/química , Minerales/metabolismo , Oxidación-Reducción , Sulfatos/metabolismo , Sulfuros/química
6.
J Hered ; 109(4): 347-359, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29140441

RESUMEN

Pangolins, considered the most-trafficked mammals on Earth, are rapidly heading to extinction. Eight extant species of these African and Asian scale-bodied anteaters are commonly recognized, but their evolutionary relationships remain largely unexplored. Here, we present the most comprehensive phylogenetic assessment of pangolins, based on genetic variation of complete mitogenomes and 9 nuclear genes. We confirm deep divergence among Asian and African pangolins occurring not later than the Oligocene-Miocene boundary ca. 23 million years ago (Ma) (95% HPD = 18.7-27.2), limited fossil evidence suggesting dispersals from Europe. We recognize 3 genera including Manis (Asian pangolins), Smutsia (large African pangolins), and Phataginus (small African pangolins), which first diversified in the Middle-Upper Miocene (9.8-13.3 Ma) through a period of gradual cooling coinciding with a worldwide taxonomic diversification among mammals. Based on large mitogenomic distances among the 3 genera (18.3-22.8%) and numerous (18) morphological traits unique to Phataginus, we propose the subfamily Phatagininae subfam. nov. to designate small African pangolins. In contrast with the morphological-based literature, our results establish that the thick-tailed pangolin (Manis crassicaudata) is sister-species of the Sunda (Manis javanica) and Palawan (Manis culionensis) pangolins. Mitogenomic phylogenetic delineations supported additional pangolin species subdivisions (n = 13), including 6 African common pangolin (Phataginus tricuspis) lineages, but these patterns were not fully supported by our multi-locus approach. Finally, we identified more than 5000 informative mitogenomic sites and diagnostic variation from 5 nuclear genes among all species and lineages of pangolins, providing an important resource for further research and for effectively tracing the worldwide pangolin trade.


Asunto(s)
Variación Genética , Genoma/genética , Xenarthra/genética , África , Animales , Asia , Evolución Biológica , Núcleo Celular/genética , Especies en Peligro de Extinción , Genoma Mitocondrial/genética , Mamíferos/anatomía & histología , Mamíferos/clasificación , Mamíferos/genética , Filogenia , Xenarthra/anatomía & histología , Xenarthra/clasificación
7.
Biomacromolecules ; 18(12): 4249-4260, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29035554

RESUMEN

Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the ß-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polímeros/química , Agregación Patológica de Proteínas/patología , Amiloidosis/patología , Animales , Línea Celular , Diabetes Mellitus Tipo 2/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Nanopartículas/química
8.
Viruses ; 9(10)2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28972544

RESUMEN

During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.


Asunto(s)
Animales Salvajes/virología , Monkeypox virus/aislamiento & purificación , Mpox/veterinaria , Animales , Anticuerpos Antivirales/sangre , República Democrática del Congo/epidemiología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Mamíferos/virología , Mpox/epidemiología , Mpox/transmisión , Mpox/virología , Monkeypox virus/genética , Monkeypox virus/inmunología , Monkeypox virus/patogenicidad , Infecciones por Poxviridae/epidemiología , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/veterinaria , Infecciones por Poxviridae/virología , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , Sciuridae/virología , Musarañas/virología
9.
Diabetes ; 66(12): 2973-2986, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28928277

RESUMEN

The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function.


Asunto(s)
Proteína 11 Similar a Bcl2/fisiología , Hígado Graso/etiología , Resistencia a la Insulina , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Hígado/metabolismo , Obesidad/metabolismo , Estrés Oxidativo , Animales , Células Cultivadas , Activación Enzimática , Ácidos Grasos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
10.
J Mol Endocrinol ; 59(4): 325-337, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28827413

RESUMEN

Type 1 diabetes (T1D) is characterized by the destruction of insulin-producing ß-cells by immune cells in the pancreas. Pro-inflammatory including TNF-α, IFN-γ and IL-1ß are released in the islet during the autoimmune assault and signal in ß-cells through phosphorylation cascades, resulting in pro-apoptotic gene expression and eventually ß-cell death. Protein tyrosine phosphatases (PTPs) are a family of enzymes that regulate phosphorylative signalling and are associated with the development of T1D. Here, we observed expression of PTPN6 and PTPN1 in human islets and islets from non-obese diabetic (NOD) mice. To clarify the role of these PTPs in ß-cells/islets, we took advantage of CRISPR/Cas9 technology and pharmacological approaches to inactivate both proteins. We identify PTPN6 as a negative regulator of TNF-α-induced ß-cell death, through JNK-dependent BCL-2 protein degradation. In contrast, PTPN1 acts as a positive regulator of IFN-γ-induced STAT1-dependent gene expression, which enhanced autoimmune destruction of ß-cells. Importantly, PTPN1 inactivation by pharmacological modulation protects ß-cells and primary mouse islets from cytokine-mediated cell death. Thus, our data point to a non-redundant effect of PTP regulation of cytokine signalling in ß-cells in autoimmune diabetes.


Asunto(s)
Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Animales , Muerte Celular/genética , Muerte Celular/inmunología , Expresión Génica , Técnicas de Inactivación de Genes , Marcación de Gen , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos NOD , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatasas/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Mol Phylogenet Evol ; 113: 150-160, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28552433

RESUMEN

Giant sengis (Macroscelidea; Macroscelididae; Rhynchocyon), also known as giant elephant-shrews, are small-bodied mammals that range from central through eastern Africa. Previous research on giant sengi systematics has relied primarily on pelage color and geographic distribution. Because some species have complex phenotypic variation and large geographic ranges, we used molecular markers to evaluate the phylogeny and taxonomy of the genus, which currently includes four species: R. chrysopygus, R. cirnei (six subspecies), R. petersi (two subspecies), and R. udzungwensis. We extracted DNA from fresh and historical museum samples from all taxa except one R. cirnei subspecies, and we generated and analyzed approximately 4700 aligned nucleotides (2685 bases of mitochondrial DNA and 2019 bases of nuclear DNA) to reconstruct a molecular phylogeny. We genetically evaluate Rhynchocyon spp. sequences previously published on GenBank, propose that the captive R. petersi population in North American zoos is likely R. p. adersi, and suggest that hybridization among taxa is not widespread in Rhynchocyon. The DNA sample we have from the distinctive but undescribed giant sengi from the Boni forest of northern coastal Kenya is unexpectedly nearly identical to R. chrysopygus, which will require further study. Our analyses support the current morphology-based taxonomy, with each recognized species forming a monophyletic clade, but we propose elevating R. c. stuhlmanni to a full species.


Asunto(s)
Filogenia , Musarañas/clasificación , Musarañas/genética , Alelos , Animales , Secuencia de Bases , Teorema de Bayes , ADN Mitocondrial/genética , Geografía , Kenia , Pigmentación , Especificidad de la Especie
12.
Mol Ecol ; 25(23): 5975-5993, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27862533

RESUMEN

Knowledge on faunal diversification in African rainforests remains scarce. We used phylogeography to assess (i) the role of Pleistocene climatic oscillations in the diversification of the African common pangolin (Manis tricuspis) and (ii) the utility of our multilocus approach for taxonomic delineation and trade tracing of this heavily poached species. We sequenced 101 individuals for two mitochondrial DNA (mtDNA), two nuclear DNA and one Y-borne gene fragments (totalizing 2602 bp). We used a time-calibrated, Bayesian inference phylogenetic framework and conducted character-based, genetic and phylogenetic delineation of species hypotheses within African common pangolins. We identified six geographic lineages partitioned into western Africa, Ghana, the Dahomey Gap, western central Africa, Gabon and central Africa, all diverging during the Middle to Late Pleistocene. MtDNA (cytochrome b + control region) was the sole locus to provide diagnostic characters for each of the six lineages. Tree-based Bayesian delimitation methods using single- and multilocus approaches gave high support for 'species' level recognition of the six African common pangolin lineages. Although the diversification of African common pangolins occurred during Pleistocene cyclical glaciations, causative correlation with traditional rainforest refugia and riverine barriers in Africa was not straightforward. We conclude on the existence of six cryptic lineages within African common pangolins, which might be of major relevance for future conservation strategies. The high discriminative power of the mtDNA markers used in this study should allow an efficient molecular tracing of the regional origin of African common pangolin seizures.


Asunto(s)
Euterios/genética , Evolución Molecular , Filogenia , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Gabón , Ghana , Filogeografía
13.
PLoS One ; 11(9): e0162009, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27653635

RESUMEN

Mt. Meru is Tanzania's second highest mountain and the ninth highest in Africa. The distribution and abundance of small mammals on this massif are poorly known. Here we document the distribution of shrews and rodents along an elevational gradient on the southeastern versant of Mt. Meru. Five sites were sampled with elevational center points of 1950, 2300, 2650, 3000, and 3600 m, using a systematic methodology of standard traps and pitfall lines, to inventory the shrews and rodents of the slope. Ten species of mammal were recorded, comprising 2 shrew and 8 rodent species with the greatest diversity for each group at 2300 m. No species previously unrecorded on Mt. Meru was observed. Two rodent genera that occur in nearby Eastern Arc Mountains (Hylomyscus and Beamys) were not recorded. The rodent Lophuromys verhageni and a recently described species of shrew, Crocidura newmarki, are the only endemic mammals on Mt. Meru, and were widespread across the elevational gradient. As in similar small mammal surveys on other mountains of Tanzania, rainfall positively influenced trap success rates for shrews, but not for rodents. This study provides new information on the local small mammal fauna of the massif, but numerous other questions remain to be explored. Comparisons are made to similar surveys of other mountains in Tanzania.

14.
Zookeys ; (566): 145-55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047247

RESUMEN

Methodological improvements now allow routine analyses of highly degraded DNA samples as found in museum specimens. Using these methods could be useful in studying such groups as rodents of the genus Gerbillus for which i) the taxonomy is still highly debated, ii) collection of fresh specimens may prove difficult. Here we address precise taxonomic questions using a small portion of the cytochrome b gene obtained from 45 dry skin/skull museum samples (from 1913 to 1974) originating from two African and three Asian countries. The specimens were labelled Gerbillus gerbillus, Gerbillus andersoni, Gerbillus nanus, Gerbillus amoenus, Gerbillus perpallidus and Gerbillus pyramidum, and molecular results mostly confirmed these assignations. The close relationship between Gerbillus nanus (Asian origin) and Gerbillus amoenus (African origin) confirmed that they represent vicariant sibling species which differentiated in allopatry on either side of the Red Sea. In the closely related Gerbillus perpallidus and Gerbillus pyramidum, specimens considered as belonging to one Gerbillus pyramidum subspecies (Gerbillus pyramidum floweri) appeared closer to Gerbillus perpallidus suggesting that they (Gerbillus pyramidum floweri and Gerbillus perpallidus) may represent a unique species, distributed on both sides of the Nile River, for which the correct name should be Gerbillus floweri. Furthermore, the three other Gerbillus pyramidum subspecies grouped together with no apparent genetic structure suggesting that they may not yet represent genetically differentiated lineages. This study confirms the importance of using these methods on museum samples, which can open new perspectives in this particular group as well as in other groups of interest.

15.
Sci Rep ; 6: 23802, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033313

RESUMEN

BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14-17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/deficiencia , Peso Corporal/fisiología , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Obesidad/fisiopatología , Proteínas Supresoras de Tumor/deficiencia , Tejido Adiposo/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/fisiología , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Homeostasis/fisiología , Insulina/farmacología , Resistencia a la Insulina , Leptina/sangre , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/patología , Proteínas Recombinantes/farmacología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
16.
FEBS J ; 283(16): 3002-15, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26972840

RESUMEN

Diabetes mellitus are complex, multi-organ metabolic pathologies characterized by hyperglycemia. Emerging evidence shows that the highly conserved and potent JAK/STAT signaling pathway is required for normal homeostasis, and, when dysregulated, contributes to the development of obesity and diabetes. In this review, we analyze the role of JAK/STAT activation in the brain, liver, muscle, fat and pancreas, and how this affects the course of the disease. We also consider the therapeutic implications of targeting the JAK/STAT pathway in treatment of obesity and diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Quinasas Janus/metabolismo , Obesidad/metabolismo , Factores de Transcripción STAT/metabolismo , Tejido Adiposo/enzimología , Tejido Adiposo/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Diabetes Mellitus/enzimología , Diabetes Mellitus/terapia , Hígado Graso/metabolismo , Humanos , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Quinasas Janus/antagonistas & inhibidores , Ratones , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Obesidad/enzimología , Obesidad/terapia , Factores de Transcripción STAT/antagonistas & inhibidores , Transducción de Señal
17.
Mol Phylogenet Evol ; 99: 7-15, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26975691

RESUMEN

Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution.


Asunto(s)
Quirópteros/parasitología , Haemosporida/clasificación , Parásitos/clasificación , Primates/parasitología , Roedores/parasitología , África Oriental , Animales , Teorema de Bayes , Quirópteros/clasificación , Haemosporida/crecimiento & desarrollo , Estadios del Ciclo de Vida , Funciones de Verosimilitud , Parásitos/crecimiento & desarrollo , Filogenia
18.
Sci Rep ; 6: 21274, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26880502

RESUMEN

Aggregation of human islet amyloid polypeptide (hIAPP) into fibrils and plaques is associated with pancreatic ß-cell loss in type 2 diabetes (T2D). However, due to the rapidness of hIAPP conversion in aqueous phase, exactly which hIAPP species is responsible for the observed toxicity and through what mechanisms remains ambiguous. In light of the importance of understanding hIAPP toxicity for T2D here we show a biophysical scheme based on the use of a lipophilic Laurdan dye for examining MIN6 cell membranes upon exposure to fresh and oligomeric hIAPP as well as mature amyloid. It has been found that all three hIAPP species, especially fresh hIAPP, enhanced membrane fluidity and caused losses in cell viability. The cell generation of reactive oxygen species (ROS), however, was the most pronounced with mature amyloid hIAPP. The correlation between changes in membrane fluidity and cell viability and their lack of correlation with ROS production suggest hIAPP toxicity is elicited through both physical and biochemical means. This study offers a new insight into ß-cell toxicity induced by controlled hIAPP species, as well as new biophysical methodologies that may prove beneficial for the studies of T2D as well as neurological disorders.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Fluidez de la Membrana/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo
19.
Small ; 12(12): 1615-26, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26808649

RESUMEN

Human islet amyloid polypeptide (hIAPP, or amylin) forms amyloid deposits in the islets of Langerhans, a phenomenon that is associated with type-2 diabetes impacting millions of people worldwide. Accordingly, strategies against hIAPP aggregation are essential for the prevention and eventual treatment of the disease. Here, it is shown that generation-3 OH-terminated poly(amidoamine) dendrimer, a polymeric nanoparticle, can effectively halt the aggregation of hIAPP and shut down hIAPP toxicity in pancreatic MIN6 and NIT-1 cells as well as in mouse islets. This finding is supported by high-throughput dynamic light scattering experiment and thioflavin T assay, where the rapid evolution of hIAPP nucleation and elongation processes is halted by the addition of the dendrimer up to 8 h. Discrete molecular dynamics simulations further reveal that hIAPP residues bound strongly with the dendrimer near the c-terminal portion of the peptide, where the amyloidogenic sequence (residues 22-29) locates. Furthermore, simulations of hIAPP dimerization reveal that binding with the dendrimer significantly reduces formation of interpeptide contacts and hydrogen bonds, thereby prohibiting peptide self-association and amyloidosis. This study points to a promising nanomedicinal strategy for combating type-2 diabetes and may have broader implications for targeting neurological disorders whose distinct hallmark is also amyloid fibrillation.


Asunto(s)
Amiloide/metabolismo , Dendrímeros/toxicidad , Células Secretoras de Insulina/patología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Benzotiazoles , Muerte Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Humanos , Hidroxilación , Células Secretoras de Insulina/efectos de los fármacos , Modelos Moleculares , Multimerización de Proteína/efectos de los fármacos , Tiazoles/metabolismo
20.
Phys Chem Chem Phys ; 18(1): 94-100, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26625841

RESUMEN

Human islet amyloid polypeptide (hIAPP or amylin) aggregation is directly associated with pancreatic ß-cell death and subsequent insulin deficiency in type 2 diabetes (T2D). Since no cure is currently available for T2D, it is of great benefit to devise new anti-aggregation molecules, which protect ß-cells against hIAPP aggregation-induced toxicity. Engineered nanoparticles have been recently exploited as anti-aggregation nanomedicines. In this work, we studied graphene oxide (GO) nanosheets for their potential for hIAPP aggregation inhibition by combining computational modeling, biophysical characterization and cell toxicity measurements. Using discrete molecular dynamics (DMD) simulations and in vitro studies, we showed that GO exhibited an inhibitory effect on hIAPP aggregation. DMD simulations indicated that the strong binding of hIAPP to GO nanosheets was driven by hydrogen bonding and aromatic stacking and that the strong peptide-GO binding efficiently inhibited hIAPP self-association and aggregation on the nanosheet surface. Secondary structural changes of hIAPP upon GO binding derived from DMD simulations were consistent with circular dichroism (CD) spectroscopy measurements. Transmission electron microscopy (TEM) images confirmed the reduction of hIAPP aggregation in the presence of GO. Furthermore, we carried out a cell toxicity assay and found that these nanosheets protected insulin-secreting NIT-1 pancreatic ß-cells against hIAPP-induced toxicity. Our multidisciplinary study suggests that GO nanosheets have the potential to be utilized as an anti-aggregation nanomedicine itself in addition to a biosensor or delivery vehicle for the mitigation of T2D progression.


Asunto(s)
Grafito/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/biosíntesis , Polipéptido Amiloide de los Islotes Pancreáticos/antagonistas & inhibidores , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Óxidos/farmacología , Agregado de Proteínas/efectos de los fármacos , Línea Celular , Grafito/química , Humanos , Células Secretoras de Insulina/metabolismo , Simulación de Dinámica Molecular , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...