Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2753: 339-350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285349

RESUMEN

Fundamental techniques for determining the toxicity of pesticides to soil organisms are ecotoxicological laboratory assays. Due to their expanding potential and rise in use as a sustainable agricultural strategy toward the biological pest management, we quantified the effects of the compounds from the active fraction of the green seaweed Chaetomorpha antennina (Chlorophyceae), which is found in abundance in coastal areas of India that was used for the control of the polyphagous lepidopteran Spodoptera litura. Since the seaweed compounds were able to affect the morphology, physiology, and biochemical aspects of the pest, it is essential to perform an ecotoxicological assessment against the bioindicator organism Eudrilus eugeniae Kinb. This comprehensive assessment includes a morphological assay as well as the possible effects of the compounds on the earthworm's physiological and biochemical aspects such as acetylcholinesterase, catalase, and superoxide dismutase enzyme activities. The benignity of the compounds should also be confirmed by analyzing the gut histology of the earthworms treated with the compounds.


Asunto(s)
Chlorophyta , Oligoquetos , Algas Marinas , Animales , Acetilcolinesterasa , Agentes de Control Biológico , Ecotoxicología
2.
Sci Rep ; 13(1): 13884, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620354

RESUMEN

Improving agricultural products by the stimulation of plant growth and defense mechanisms by priming with plant extracts is needed to attain sustainability in agriculture. This study focused to consider the possible improvement in Vigna radiata L. seed germination rate, plant growth, and protection against the natural stress by increasing the defense mechanisms through the incorporation of Sesamum indicum phytochemical compounds with pre-sowing seed treatment technologies. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis revealed that the methanol extract of S. indicum leaf extract contained eight major bioactive compounds, namely, 2-ethylacridine (8.24%), tert-butyl (5-isopropyl-2-methylphenoxy) dimethylsilane (13.25%), tris(tert-butyldimethylsilyloxy) arsane (10.66%), 1,1,1,3,5,5,5-heptamethyltrisiloxane (18.50%), acetamide, N-[4-(trimethylsilyl) phenyl (19.97%), 3,3-diisopropoxy-1,1,1,5,5,5-hexamethyltrisiloxane (6.78%), silicic acid, diethyl bis(trimethylsilyl) ester (17.71%) and cylotrisiloxane, hexamethyl-(4.89%). The V. radiata seeds were treated with sesame leaf extract seeds at concentrations 0, 10, 25, 50, and 100 mg/L. Sesame leaf extract at 50 and 100 mg/L concentrations was effective in increasing the germination percentage and the fresh and dry weights of roots and shoots. The increased peroxidase activity was noticed after treatment with S. indicum extract. In addition, disease percentage (< 60%) of both fungal pathogens (Rhizoctonia and Macrophomina) was significantly reduced in V. radiata plants treated with 100 mg/L of sesame leaf extract. These results revealed that physiochemical components present in S. indicum mature leaf extract significantly enhanced growth and defense mechanism in green gram plants.


Asunto(s)
Ascomicetos , Sesamum , Vigna , Rhizoctonia , Agricultura , Cortodoxona , Mecanismos de Defensa
3.
Sci Total Environ ; 858(Pt 1): 159512, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265619

RESUMEN

The resistance to insecticides among insects, including mosquitoes and agricultural pests, and the impact of these compounds' environmental risks and health issues have motivated the proposition of eco-friendly alternatives. Thus, we aimed to explore the potential use of Desmostachya bipinnata for the biosynthesis of TiO2NPs and evaluate their larvicidal and pupicidal activity of target (Aedes aegypti and Spodoptera litura) and acute toxicity in non-target organisms (Toxorhynchites splendens and Eisenia fetida), at distinct concentrations, after 24 h of exposure. The characterization of the biosynthesized TiO2NPs was carried out by FT-IR, XRD, SEM, and EDX analysis. Under the UV-vis spectrum analysis, a sharp peak was recorded at 200 to 800 nm, which indicated the production of TiO2NPs by the plant extract. The SEM analysis revealed that the synthesized TiO2NPs were spherical with a diameter of 36.4 nm and were detected in the XRD spectrum analysis related to the TiO2NPs. The highest percentage of mortality recorded at 900 µg/mL was 96 % and 94 % in the 2nd instar of A. aegypti and S. litura larvae, respectively, and exhibited the LC50 and LC90 values 5 of 458.79 and 531.01 µg/mL, respectively. The biosynthesized TiO2NPs showed concentration-dependent increased pupal lethality for both A. aegypti and S. litura. We also observed increased detoxification enzyme activity (α esterase, ß esterase, and glutathione-S-transferase) of A. aegypti and S. litura exposed to different concentrations of biosynthesized TiO2NPs as histopathological changes in the midgut region of these animals. On the other hand, the mortality rate of non-target organisms (T. splendens and E. fetida) was lower when exposed to TiO2NPs, compared to the high lethality induced by synthetic pesticides (cypermethrin and monocrotophos for E. fetida; and cypermethrin and temphos for T. splendens). Thus, our study provides pioneering evidence on the potential use of D. bipinnata-mediated TiO2NPs for controlling mosquito vectors and agricultural pest management.


Asunto(s)
Aedes , Insecticidas , Nanopartículas del Metal , Animales , Spodoptera , Plata/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/toxicidad , Hojas de la Planta , Insecticidas/toxicidad , Larva , Extractos Vegetales/farmacología , Esterasas
4.
Front Physiol ; 13: 900570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439259

RESUMEN

Spodoptera litura (Fabricius) is an agriculturally significant polyphagous insect pest that has evolved a high level of resistance to conventional insecticides. A dietary assay was used in this work to assess the resilience of field populations of S. litura to λ-cyhalothrin. Analysis of the function and expression of the cytochrome P450 gene was used to test the sensitivity of S. litura larvae to sub-lethal concentrations of the insecticidal plant chemical Precocene 1, both by itself and in combination with λ-cyhalothrin. The activity of esterase enzymes (α and ß) was found to decrease 48 h post treatment with Precocene 1. The activity of GST enzyme and cytochrome P450 increased with Precocene 1 treatment post 48 h, however. Expression studies revealed the modulation by Precocene 1 of cytochrome P450 genes, CYP4M16, CYP4M15, CYP4S8V4, CYP4G31, and CYP4L10. While CYP4M16 expression was stimulated the most by the synergistic Precocene 1 + λ-cyhalothrin treatment, expression of CYP4G31 was the most down-regulated by Precocene 1 exposure. Hence, it is evident that λ-cyhalothrin-resistant pest populations are still sensitive to Precocene 1 at a sublethal concentration that is nevertheless capable of hindering their development. Precocene 1 can therefore be considered a potent candidate for the effective management of insecticide-resilient S. litura.

5.
Molecules ; 26(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770794

RESUMEN

The sustainability of agroecosystems are maintained with agro-chemicals. However, after more than 80 years of intensive use, many pests and pathogens have developed resistance to the currently used chemistries. Thus, we explored the isolation and bioactivity of a chemical compound, Precocene I, isolated from the perennial grass, Desmosstachya bipinnata (L.) Stapf. Fractions produced from chloroform extractions showed suppressive activity on larvae of Spodoptera litura (Lepidoptera: Noctuidae), the Oriental armyworm. Column chromatography analyses identified Precocene I confirmed using FTIR, HPLC and NMR techniques. The bioactivity of the plant-extracted Dp-Precocene I was compared to a commercially produced Precocene I standard. The percentage of mortality observed in insects fed on plant tissue treated with 60 ppm Db-Precocene I was 97, 87 and 81, respectively, for the second, third and fourth instar larvae. The LC50 value of third instars was 23.2 ppm. The percentages of survival, pupation, fecundity and egg hatch were altered at sub-lethal concentrations of Db-Precocene I (2, 4, 6 and 8 ppm, sprays on castor leaves). The observed effects were negatively correlated with concentration, with a decrease in effects as concentrations increased. Distinct changes in feeding activity and damage to gut tissues were observed upon histological examination of S. litura larvae after the ingestion of Db-Precocene I treatments. Comparative analyses of mortality on a non-target organism, the earthworm, Eisenia fetida, at equal concentrations of Precocene I and two chemical pesticides (cypermethrin and monocrotophos) produced mortality only with the chemical pesticide treatments. These results of Db-Precocene I as a highly active bioactive compound support further research to develop production from the grass D. bipinnata as an affordable resource for Precocene-I-based insecticides.


Asunto(s)
Anélidos/efectos de los fármacos , Benzopiranos/farmacología , Insecticidas/farmacología , Extractos Vegetales/farmacología , Poaceae/química , Spodoptera/efectos de los fármacos , Animales , Benzopiranos/química , Benzopiranos/aislamiento & purificación , Insecticidas/química , Insecticidas/aislamiento & purificación , Pruebas de Sensibilidad Parasitaria , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Análisis Espectral
6.
Sci Rep ; 11(1): 20488, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650105

RESUMEN

Reduced pathogen resistance and management of the left-over rice stubble are among the most important challenges faced in rice cultivation. A novel and eco-friendly strategy to synthesise 'Fungal Chitosan' (FC) from Aspergillus niger using rice straw could serve as a sustainable treatment approach to improve both disease resistance and yields, while also effectively managing the rice stubble waste. The FC treatment promoted germination as well as growth parameters in rice varieties, TN1 (high yielding-susceptible) and PTB33 (low yielding-resistant) better than a commercial chitosan (PC). Treatments of exogenously applied FC to plants produced direct toxicity to Xoo, and reduced the BLB disease index by 39.9% in TN1. The capability of FC to trigger a cascade of defense pathways was evident from the measurable changes in the kinetics of defense enzymes, peroxidase (POD) and polyphenol oxidase (PPO). FC treatment increased levels of POD in TN1 by 59.4%, which was 35.3% greater than that of untreated PTB33. Therefore, the study demonstrated the effectiveness of FC treatments for use in agriculture as a potential biostimulant as well as protective agent against bacterial leaf blight, BLB, of rice (Oryza sativa) that could be produced from stubble waste and improve rice stubble management strategies.


Asunto(s)
Quitosano/farmacología , Oryza/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Aspergillus niger/química , Germinación/efectos de los fármacos , Oryza/enzimología , Oryza/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Xanthomonas/efectos de los fármacos
7.
Molecules ; 26(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34641534

RESUMEN

Spodoptera litura Fab. is a polyphagous pest causing damage to many agriculture crops leading to yield loss. Recurrent usage of synthetic pesticides to control this pest has resulted in resistance development. Plant-derived diterpenoid compound andrographolide was isolated from the leaves of Andrographis paniculata. It was analysed by gas chromatography-mass spectroscopy and quantified by HPLC. Nutritional indices and digestive enzymatic profile were evaluated. Third, fourth and fifth instar larvae were treated with different concentrations of andrographolide. At 3, 6 and 9 ppm-treated concentrations the larvae showed decreased RGR, RCR, ECI, ECD values with adverse increase in AD. The digestive enzymes were significantly inhibited when compared with control. Conspicuously, andrographolide showed pronounced mortality of S. litura by inhibition of enzyme secretion and intake of food. The binding ability of andrographolide with CYTP450 showed high affinity with low binding energy. Andrographolide has the potential to be exploited as a biocontrol agent against S. litura as an eco-friendly pesticide.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/farmacología , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Spodoptera/efectos de los fármacos , Amilasas/metabolismo , Andrographis/química , Animales , Diterpenos/aislamiento & purificación , Diterpenos/metabolismo , Diterpenos/toxicidad , Relación Dosis-Respuesta a Droga , Inactivación Metabólica/efectos de los fármacos , Insecticidas/aislamiento & purificación , Insecticidas/metabolismo , Insecticidas/toxicidad , Larva/efectos de los fármacos , Lipasa/metabolismo , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/metabolismo
8.
Environ Sci Pollut Res Int ; 28(7): 7870-7882, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33044694

RESUMEN

Impact of chloroform extract of Desmostachya bipinnata was evaluated on armyworm Spodoptera litura (Lepidoptera: Noctuidae). The chloroform extract of D. bipinnata was subjected to GC-MS analysis to elucidate the vital 12 compounds. The mortality of S. litura was tested at four different concentrations viz., 0.5, 1.0, 1.5, and 2.0 %, which exhibited a dose-dependent response. Mortality was significant at a concentration of 2%. Accrued LC50 (lethal concentration) value was 0.15%. The developmental duration of larva and pupa was significantly increased in all treatments. Reduction in weight of pupae in treated groups was noticed and was compared with control. Longevity of S. litura decreased in all tested treatments and being most significant at concentrations of 1.5 and 2%. Simultaneous reduction in fecundity of S. litura was observed. Pathological changes were noticed in the mid gut of S. litura at concentrations of 1 and 1.5%. No significant impacts on earthworm were observed. The results of the present study revealed that chloroform extract from D. bipinnata, an old-world perennial grass, shown effective bio-pesticidal activity against S. litura, an important agricultural pest.


Asunto(s)
Insecticidas , Oligoquetos , Animales , Larva , Extractos Vegetales , Pupa , Spodoptera
9.
Pestic Biochem Physiol ; 160: 163-170, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31519251

RESUMEN

Aedes aegypti is a major mosquito vector that can transfer many deadly diseases such as dengue, chikungunya, Zika, and yellow fever viruses. Due to the developing resistance among the vector populations by the application of chemical insecticides, alternative eco-friendly vector management strategies are being focused. In this aspect, the present study was carried out to evaluate the mosquitocidal potentials of essential oil of Sphaeranthus amaranthoides (EO-Sa). EO-Sa was found to be effective against Ae. aegypti mosquito vector by exhibiting significant larvicidal, adulticidal and repellent activities. GCMS analysis of EO-Sa revealed the presence of Carvone as the major component (peak area of 89.7%). The larvicidal bioassays performed revealed that the second instar larvae were relatively more susceptible (94.32% mortality) to EO-Sa treatments (75 ppm), LC50, 20.38 ppm.The sub lethal treatment concentration (20 ppm) significantly affected the oviposition, fecundity and morphology of Ae. aegypti. At sub lethal treatment concentration, EO-Sa down regulated α- and ß carboxylesterase and up regulated the GST and CYP450 level of third and fourth instar larvae. Thus the present results illustrates that EO-Sa can deliver a durable larvicidal, repellent and adulticidal activity against Ae. aegypti in an effective and eco-friendly manner.


Asunto(s)
Aedes/efectos de los fármacos , Asteraceae/química , Dengue/transmisión , Insectos Vectores/efectos de los fármacos , Aceites Volátiles/toxicidad , Animales
10.
Ecotoxicol Environ Saf ; 183: 109474, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394378

RESUMEN

Entomopathogenic fungi are feasible and effective against the agricultural pest. In the current research we investigated the bioactive comparison of two widely accepted entmopathogens (Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae, (basionym)) against the Spodoptera litura (Fab.) through the assessment of larval tolerance and regulation of antioxidants and non-target impact on the earth worm, E. eugeniae, along with commercial pesticides. The entomopathogenic fungus exposure resulted in the modification of the levels of detoxification enzymes as well as significant increases in catalase and superoxide dismutase activity after exposure to the entomopathogenic fungus. Bioassay results showed that B. bassiana and M. anisopliae displayed larval mortality against third and fourth instars. Correspondingly, sub-lethal concentrations of B. bassiana showed development impairment as compared to M. anisopliae. Gut-histology revealed that mycotoxins dosage (4 × 105) showed significant changes in the midgut tissues as compared to control larvae. The non-target screening through artificial soil assay on the earth worm E. eugeniae, with mycotoxins B. bassiana (5 × 108 conidia/ml/kg) and M. anisopliae (5 × 108 conidia/ml/kg) showed less toxicity as compared to Monocrotophos (10 ppm/kg). Current results suggest that the fungal mycotoxins of M. anisopliae and B. bassiana significantly reduce the development of lepidopteran pests, while having only lesser impact on beneficial earthworms.


Asunto(s)
Beauveria , Metarhizium , Micotoxinas/farmacología , Oligoquetos/efectos de los fármacos , Control Biológico de Vectores/métodos , Spodoptera/microbiología , Animales , Beauveria/crecimiento & desarrollo , Bioensayo , Larva/crecimiento & desarrollo , Larva/microbiología , Metarhizium/crecimiento & desarrollo , Spodoptera/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo
11.
Environ Sci Pollut Res Int ; 26(16): 16303-16315, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30977009

RESUMEN

The effects of crude ethanol derived leaf extract Trichodesma indicum (Linn) (Ex-Ti) and their chief derivatives were accessed on the survival and development of the dengue mosquito Ae. aegypti also their non-toxic activity against mosquito predator. T. indicum is recognized to be the vital weed plant and a promising herb in the traditional ayurvedic medicine. In this study, the GC-MS chromatogram of Ex-Ti showed higher peak area percentage for cis-10-Heptadecenoic acid (21.83%) followed by cycloheptadecanone (14.32%). The Ex-Ti displayed predominant mortality in larvae with 96.45 and 93.31% at the prominent dosage (200 ppm) against III and IV instar. Correspondingly, sub-lethal dosage against the enzymatic profile of III and IV instar showed downregulation of α,ß-carboxylesterase and SOD protein profiles at the maximum concentration of 100 ppm. However, enzyme level of GST as well as CYP450 increased significantly dependent on sub-lethal concentration. Likewise, fecundity and hatchability of egg rate of dengue mosquito decreased to the sub-lethal concentration of Ex-Ti. Repellent assay illustrates that Ex-Ti concentration had greater protection time up to 210 min at 100 ppm. Also, activity of Ex-Ti on adult mosquito displayed 100% mortality at the maximum dosage of 600, 500 and 400 ppm within the period of 50, 60 and 70 min, respectively. Photomicrography screening showed that lethal dosage of Ex-Ti (100 ppm) produced severe morphological changes with dysregulation in their body parts as matched to the control. Effects of Ex-Ti on the Toxorhynchites splendens IV instar larvae showed less mortality (43.47%) even at the maximum dosage of 1500 ppm as matched to the chemical pesticide Temephos. Overall, the present research adds a toxicological valuation on the Ex-Ti and their active constituents as a larvicidal, repellent and adulticidal agents against the global burdening dengue mosquito.


Asunto(s)
Aedes/efectos de los fármacos , Boraginaceae/química , Repelentes de Insectos/farmacología , Mosquitos Vectores/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Carboxilesterasa , Culicidae/efectos de los fármacos , Dengue/prevención & control , Femenino , Fertilidad/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Larva/efectos de los fármacos , Plaguicidas/farmacología , Extractos Vegetales/análisis , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...