Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 30(11): 2531-2544, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38593212

RESUMEN

PURPOSE: Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs. EXPERIMENTAL DESIGN: The in vitro characteristics and in vivo biodistribution, antitumor efficacy, and tolerability of 225Ac-macropa-pelgifatamab (225Ac-pelgi) and other TATs were investigated in cell line- and patient-derived prostate cancer xenograft models. The antitumor efficacy of 225Ac-pelgi was also investigated in combination with the androgen receptor inhibitor darolutamide. RESULTS: Actinium-225-labeling of 225Ac-pelgi was efficient already at room temperature. Potent in vitro cytotoxicity was seen in PSMA-expressing (LNCaP, MDA-PCa-2b, and C4-2) but not in PSMA-negative (PC-3 and DU-145) cell lines. High tumor accumulation was seen for both 225Ac-pelgi and 225Ac-DOTA-pelgi in the MDA-PCa-2b xenograft model. In the C4-2 xenograft model, 225Ac-pelgi showed enhanced antitumor efficacy with a T/Cvolume (treatment/control) ratio of 0.10 compared with 225Ac-DOTA-pelgi, 225Ac-DOTA-J591, and 227Th-HOPO-pelgifatamab (227Th-pelgi; all at 300 kBq/kg) with T/Cvolume ratios of 0.37, 0.39, and 0.33, respectively. 225Ac-pelgi was less myelosuppressive than 227Th-pelgi. 225Ac-pelgi showed dose-dependent treatment efficacy in the patient-derived KuCaP-1 model and strong combination potential with darolutamide in both cell line- (22Rv1) and patient-derived (ST1273) xenograft models. CONCLUSIONS: These results provide a strong rationale to investigate 225Ac-pelgi in patients with prostate cancer. A clinical phase I study has been initiated (NCT06052306).


Asunto(s)
Actinio , Partículas alfa , Antígenos de Superficie , Glutamato Carboxipeptidasa II , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Humanos , Animales , Ratones , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Partículas alfa/uso terapéutico , Distribución Tisular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Radiofármacos/administración & dosificación
2.
J Immunother Cancer ; 9(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34615703

RESUMEN

BACKGROUND: Targeted thorium-227 conjugates (TTCs) are an emerging class of targeted alpha therapies (TATs). Their unique mode of action (MoA) is the induction of difficult-to-repair clustered DNA double-strand breaks. However, thus far, their effects on the immune system are largely unknown. Here, we investigated the immunostimulatory effects of the mesothelin-targeted thorium-227 conjugate (MSLN-TTC) in vitro and in vivo in monotherapy and in combination with an inhibitor of the immune checkpoint programmed death receptor ligand 1 (PD-L1) in immunocompetent mice. METHODS: The murine cell line MC38 was transfected with the human gene encoding for MSLN (hMSLN) to enable binding of the non-cross-reactive MSLN-TTC. The immunostimulatory effects of MSLN-TTC were studied in vitro on human cancer cell lines and MC38-hMSLN cells. The efficacy and MoA of MSLN-TTC were studied in vivo as monotherapy or in combination with anti-PD-L1 in MC38-hMSLN tumor-bearing immunocompetent C57BL/6 mice. Experiments were supported by RNA sequencing, flow cytometry, immunohistochemistry, mesoscale, and TaqMan PCR analyses to study the underlying immunostimulatory effects. In vivo depletion of CD8+ T cells and studies with Rag2/Il2Rg double knockout C57BL/6 mice were conducted to investigate the importance of immune cells to the efficacy of MSLN-TTC. RESULTS: MSLN-TTC treatment induced upregulation of DNA sensing pathway transcripts (IL-6, CCL20, CXCL10, and stimulator of interferon genes (STING)-related genes) in vitro as determined by RNASeq analysis. The results, including phospho-STING activation, were confirmed on the protein level. Danger-associated molecular pattern molecules were upregulated in parallel, leading to dendritic cell (DC) activation in vitro. MSLN-TTC showed strong antitumor activity (T:C 0.38, p<0.05) as a single agent in human MSLN-expressing MC38 tumor-bearing immunocompetent mice. Combining MSLN-TTC with anti-PD-L1 further enhanced the efficacy (T:C 0.08, p<0.001) as evidenced by the increased number of tumor-free surviving animals. MSLN-TTC monotherapy caused migration of CD103+ cDC1 DCs and infiltration of CD8+ T cells into tumors, which was enhanced on combination with anti-PD-L1. Intriguingly, CD8+ T-cell depletion decreased antitumor efficacy. CONCLUSIONS: These in vitro and in vivo data on MSLN-TTC demonstrate that the MoA of TTCs involves activation of the immune system. The findings are of relevance for other targeted radiotherapies and may guide clinical combination strategies.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Inmunoconjugados/uso terapéutico , Torio/uso terapéutico , Animales , Perfilación de la Expresión Génica , Inmunoconjugados/farmacología , Inmunoterapia , Ratones , Torio/farmacología , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...