Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260523

RESUMEN

Mammalian DNA replication employs several RecQ DNA helicases to orchestrate the faithful duplication of genetic information. Helicase function is often coupled to the activity of specific nucleases, but how helicase and nuclease activities are co-directed is unclear. Here we identify the inactive ubiquitin-specific protease, USP50, as a ubiquitin-binding and chromatin-associated protein required for ongoing replication, fork restart, telomere maintenance and cellular survival during replicative stress. USP50 supports WRN:FEN1 at stalled replication forks, suppresses MUS81-dependent fork collapse and restricts double-strand DNA breaks at GC-rich sequences. Surprisingly we find that cells depleted for USP50 and recovering from a replication block exhibit increased DNA2 and RECQL4 foci and that the defects in ongoing replication, poor fork restart and increased fork collapse seen in these cells are mediated by DNA2, RECQL4 and RECQL5. These data define a novel ubiquitin-dependent pathway that promotes the balance of helicase: nuclease use at ongoing and stalled replication forks.

2.
Pharmacol Rep ; 76(1): 72-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38180634

RESUMEN

BACKGROUND: Chronic pain is a major health problem that affects a significant number of patients, resulting in personal suffering and substantial health care costs. One of the most commonly reported causal conditions is osteoarthritis (OA). In addition to sensory symptoms, chronic pain shares an inherent overlap with mood or anxiety disorders. The involvement of the frontal cortex, striatum and nucleus accumbens, in the affective processing of pain is still poorly understood. METHODS: Male Wistar rats were divided into two groups: MIA (monoiodoacetate injected into the knee-model of OA) and sham (NaCl). Behavioral tests assessing pain, anxiety, and depressive behavior were performed at week 1, 3, 4, 6, 8, and 10. Neurochemical assays were conducted at weeks 3, 6, and 10 post-MIA injection, followed by the neurotransmitters and their metabolites correlation matrix and network analysis. RESULTS: OA animals developed rapid pain phenotype, whereas anxiety-like behavior accompanied the development of a pain phenotype from 6 week post-MIA injection. We did not detect any depressive-like behavior. Instead, immobility time measured in the forced swimming test transiently decreased at 3 weeks post-MIA in the OA group. We detected changes in noradrenaline and serotonin levels in analyzed structures at distinct time points. Network analysis revealed noradrenaline and serotonin neurotransmission changes in the nucleus accumbens, confirming it to be the key structure affected by chronic pain. CONCLUSION: Animals with chronic pain exhibit symptoms of anxiety-like behavior and we identified underlying neurochemical changes using network analysis.


Asunto(s)
Dolor Crónico , Osteoartritis , Humanos , Ratas , Masculino , Animales , Ratas Wistar , Serotonina , Norepinefrina/metabolismo , Ansiedad , Modelos Animales de Enfermedad
3.
Mol Neurobiol ; 61(3): 1580-1592, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37731080

RESUMEN

Osteoarthritis (OA) is one of the most common joint disorder, with pain accompanied by functional impairment, as the most pronounced clinical symptom. Currently used pharmacotherapy involves symptomatic treatment that do not always provide adequate pain relief. This may be due to concomitance of central sensitization and development of neuropathic features in OA patients. Here we performed studies in the animal model of OA to investigate of the neuropathic component. Intraarticular injection of monoiodoacetate (MIA, 1 mg) was used to induce OA in Wistar male rats. Development of pain phenotype was assessed by behavioral testing (PAM test and von Frey's test), while corresponding changes in dorsal root ganglia (DRGs L3-L5) and spinal cord (SC) gene expression were assessed by means of qRT-PCR technique. We also performed microtomography of OA-affected knee joints to correlate the level of bone degradation with observed behavioral and molecular changes. We observed gradually developing remote allodynia after MIA treatment, indicating the presence of neuropathic component. Our results showed that, among DRGs innervating knee joint, development of central sensitization is most likely due to peripheral input of stimuli through DRG L5. In SC, development of secondary hypersensitivity correlated with increased expression of TAC1 and NPY. Our studies provided molecular records on abnormal activation of pain transmission markers in DRG and SC during development of OA that are responsible for the manifestation of neuropathic features. The obtained results increase insight into molecular changes occurring in the neuronal tissue during OA development and may contribute to readdressing treatment paradigms.


Asunto(s)
Neuralgia , Osteoartritis , Humanos , Ratas , Animales , Masculino , Factores Cordón/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Ratas Wistar , Osteoartritis/complicaciones , Osteoartritis/diagnóstico por imagen , Osteoartritis/metabolismo , Neuralgia/metabolismo , Médula Espinal/metabolismo , Ganglios Espinales/metabolismo
4.
Int J Stem Cells ; 17(1): 91-98, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37996245

RESUMEN

The development of in vitro models is essential in modern science due to the need for experiments using human material and the reduction in the number of laboratory animals. The complexity of the interactions that occur in living organisms requires improvements in the monolayer cultures. In the work presented here, neuroepithelial stem (NES) cells were differentiated into peripheral-like neurons (PLN) and the phenotype of the cells was confirmed at the genetic and protein levels. Then RNA-seq method was used to investigate how stimulation with pro-inflammatory factors such as LPS and IFNγ affects the expression of genes involved in the immune response in human fibroblast-like synoviocytes (HFLS). HFLS were then cultured on semi-permeable membrane inserts, and after 24 hours of pro-inflammatory stimulation, the levels of cytokines secretion into the medium were checked. Inserts with stimulated HFLS were introduced into the PLN culture, and by measuring secreted ATP, an increase in cell activity was found in the system. The method used mimics the condition that occurs in the joint during inflammation, as observed in the development of diseases such as rheumatoid arthritis (RA) or osteoarthritis (OA). In addition, the system used can be easily modified to simulate the interaction of peripheral neurons with other cell types.

5.
Nat Commun ; 14(1): 7834, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030626

RESUMEN

A synthetic lethal relationship exists between disruption of polymerase theta (Polθ), and loss of either 53BP1 or homologous recombination (HR) proteins, including BRCA1; however, the mechanistic basis of these observations are unclear. Here we reveal two distinct mechanisms of Polθ synthetic lethality, identifying dual influences of 1) whether Polθ is lost or inhibited, and 2) the underlying susceptible genotype. Firstly, we find that the sensitivity of BRCA1/2- and 53BP1-deficient cells to Polθ loss, and 53BP1-deficient cells to Polθ inhibition (ART558) requires RAD52, and appropriate reduction of RAD52 can ameliorate these phenotypes. We show that in the absence of Polθ, RAD52 accumulations suppress ssDNA gap-filling in G2/M and encourage MRE11 nuclease accumulation. In contrast, the survival of BRCA1-deficient cells treated with Polθ inhibitor are not restored by RAD52 suppression, and ssDNA gap-filling is prevented by the chemically inhibited polymerase itself. These data define an additional role for Polθ, reveal the mechanism underlying synthetic lethality between 53BP1, BRCA1/2 and Polθ loss, and indicate genotype-dependent Polθ inhibitor mechanisms.


Asunto(s)
Proteína BRCA1 , Mutaciones Letales Sintéticas , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Recombinación Homóloga , Reparación del ADN , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , ADN Polimerasa theta
6.
Inflamm Res ; 72(2): 181-194, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36370200

RESUMEN

OBJECTIVE: Microglia play an important role in the neuroinflammation developed in response to various pathologies. In this study, we examined the anti-inflammatory effect of the new human histamine H3 receptor (H3R) ligands with flavonoid structure in murine microglial BV-2 cells. MATERIAL AND METHODS: The affinity of flavonoids (E243 -flavone and IIIa-IIIc-chalcones) for human H3R was evaluated in the radioligand binding assay. The cytotoxicity on BV-2 cell viability was investigated with the MTS assay. Preliminary evaluation of anti-inflammatory properties was screened by the Griess assay in an in vitro neuroinflammation model of LPS-treated BV-2 cells. The expression and secretion of pro-inflammatory cytokines were evaluated by real-time qPCR and ELISA, respectively. The expression of microglial cell markers were determined by immunocytochemistry. RESULTS: Chalcone derivatives showed high affinity at human H3R with Ki values < 25 nM. At the highest nontoxic concentration (6.25 µM) compound IIIc was the most active in reducing the level of nitrite in Griess assay. Additionally, IIIc treatment attenuated inflammatory process in murine microglia cells by down-regulating pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) at both the level of mRNA and protein level. Our immunocytochemistry studies revealed expression of microglial markers (Iba1, CD68, CD206) in BV-2 cell line. CONCLUSIONS: These results emphasize the importance of further research to accurately identify the anti-inflammatory mechanism of action of chalcones.


Asunto(s)
Chalconas , Histamina , Ratones , Humanos , Animales , Histamina/metabolismo , Enfermedades Neuroinflamatorias , Flavonoides/farmacología , Flavonoides/uso terapéutico , Chalconas/metabolismo , Chalconas/farmacología , Chalconas/uso terapéutico , Microglía/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Receptores Histamínicos/metabolismo , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
7.
Neuropharmacology ; 222: 109304, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341807

RESUMEN

Chronic pain is a persistent, complex condition that contributes to impaired mood, anxiety and emotional problems. Osteoarthritis (OA) is one of the major causes of chronic pain in adults and elderly people. A substantial body of evidence demonstrate that hippocampal neural circuits, especially monoamine dopamine and serotonin levels, contributes to negative affect and avoidance motivation experienced during pain. Current pharmacological strategies for OA patients are unsatisfying and the endocannabinoid system modulation might represent an alternative for the treatment of OA-related pain. In the present study, we used a rat model of osteoarthritis induced by intra-articular injection of sodium monoiodoacetate to assess, 28 days post-induction, the contribution of endocannabinoid system on the possible alteration in pain perception and affective behavior, in LTP and monoamine levels in the lateral entorhinal cortex-dentate gyrus pathway. The results show that OA-related chronic pain induces working memory impairment and depressive-like behavior appearance, diminishes LTP, decreases dopamine levels and increases serotonin levels in the rat dentate gyrus. URB597 administration (i.p., 1 mg/kg) reduces hyperalgesia and mechanical allodynia, improves recognition memory and depressive-live behavior, restores LTP and normalizes monoamine levels in the hippocampus. The effect was observed 60-120 min post-treatment and was blocked by AM251, which proves the action of URB597 via the CB1 receptor. Therefore, our study confirms the role of anandamide in OA-related chronic pain management at the behavioral and hippocampal levels. This article is part of the Special Issue on 'Advances in mechanisms and therapeutic targets relevant to pain'.


Asunto(s)
Dolor Crónico , Osteoartritis , Ratas , Animales , Endocannabinoides , Serotonina , Dopamina , Osteoartritis/tratamiento farmacológico , Hipocampo , Aminas , Hiperalgesia
8.
Cannabis Cannabinoid Res ; 8(5): 779-789, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36318796

RESUMEN

Objective: Osteoarthritis (OA) is common degenerative joint disease, mostly characterized by gradual cartilage breakdown. Currently there are no disease-modifying drugs available, therefore, there is an increasing need for basic research to focus on cartilage function in OA. Changes in cannabinoid receptor 2 (CB2) expression were observed in the OA-affected joints, although its action on cartilage chondrocytes remain unclear. We studied the action of dimethylbutyl-deoxy-delta-8-THC (JWH-133), selective CB2 agonist, on chondrocytes metabolism using both in vitro and in vivo studies. Design: Intraarticular (i.a.) injection of monoiodoacetate (MIA) was used to induce OA in rats. OA-related pain symptoms were assessed by pressure application measurements (PAMs). Primary human chondrocytes treated with MIA were used to investigate action of JWH-133 on chondrocytes viability, proliferation, and motility. Cannabinoid system components, inflammatory cytokines and metalloproteinases (MMPs) expression was measured on messenger RNA and protein levels in chondrocytes and animal cartilage. Results: Repeated, i.a. administration of JWH-133 showed antinociceptive potential in PAM, as well as decreased levels of MMPs, which suggests that CB2 agonism may modify degradation of cartilage. JWH-133 administration partially reduced toxicity, increased proliferation, and chondrocytes' migration. Moreover, our data suggest that CB2 agonism leads to alleviation of MMPs expression both in vitro and in vivo. Conclusions: In this study, we demonstrate modifying effect of JWH-133 local administration on cartilage metabolism and MMP13 expression that was shown to be involved in cartilage degradation. CB2 receptors' activation may be of benefit for chondrocytes' proliferation, therefore delaying disease progression. Our results propose direction of studies on OA-modifying treatment that can benefit in management of human OA.


Asunto(s)
Cannabinoides , Cartílago Articular , Osteoartritis , Ratas , Humanos , Animales , Cartílago Articular/metabolismo , Metaloproteasas/metabolismo , Metaloproteasas/farmacología , Metaloproteasas/uso terapéutico , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Regeneración
9.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233118

RESUMEN

Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.


Asunto(s)
Osteoartritis , Somatomedinas , Sinoviocitos , Catepsina K/metabolismo , Células Cultivadas , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamación/patología , Lipopolisacáridos/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Osteoartritis/metabolismo , Somatomedinas/metabolismo , Membrana Sinovial/patología , Sinoviocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Br J Pharmacol ; 179(17): 4159-4160, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876149
12.
Br J Pharmacol ; 179(17): 4281-4299, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34028798

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells of mesodermal origin. Due to their capacity for self-renewal and differentiation into several cell types, MSCs have been extensively studied in experimental biology and regenerative medicine in recent years. Moreover, MSCs release extracellular vesicles (EVs), which might be partly responsible for their regenerative properties. MSCs regulate several processes in target cells via paracrine signalling, such as immunomodulation, anti-apoptotic signalling, tissue remodelling, angiogenesis and anti-fibrotic signalling. The aim of this review is to provide a detailed description of the functional properties of MSCs and EVs and their potential clinical applications, with a special focus on pain treatment. The analgesic, anti-inflammatory and regenerative properties of MSCs and EVs will be discussed for several diseases, such as neuropathic pain, osteoarthritis and spinal cord injury. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Diferenciación Celular , Vesículas Extracelulares/metabolismo , Humanos , Dolor/metabolismo , Comunicación Paracrina
13.
Neuropharmacology ; 204: 108908, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34856202

RESUMEN

Osteoarthritis (OA) is a chronic joint disease in which cartilage degeneration leads to chronic pain. The endocannabinoid system has attracted attention as an emerging drug target for OA. However, the therapeutic potential of cannabinoids is limited by psychoactive side-effects related to CB1 activation and tolerance development for analgesic effects. ß-Caryophyllene (BCP) is a low-efficacy natural agonist of CB2 and a common constituent of human diet with well-established anti-inflammatory properties. The results presented herein show the anti-nociceptive and chondroprotective potential of BCP in an animal model of OA induced by intra-articular injection of monoiodoacetate (MIA). Behavioural assessment included pressure application measurement and kinetic weight bearing tests. Histological assessment of cartilage degeneration was quantified using OARSI scoring. Experiments established the dose-response effects of BCP and pharmacological mechanisms of the antinociceptive action dependent on CB2 and opioid receptors. Chronic BCP treatment was able to hamper cartilage degeneration without producing tolerance for the analgesic effects. The data presented herein show that BCP is able to produce both acute and prolonged antinociceptive and chondroprotective effects. Together with the safety profile and legal status of BCP, these results indicate a novel and promising disease-modifying strategy for treating OA.


Asunto(s)
Analgésicos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Antirreumáticos , Osteoartritis/tratamiento farmacológico , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/uso terapéutico , Animales , Cartílago/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Masculino , Osteoartritis/patología , Osteoartritis/fisiopatología , Ratas Wistar , Receptor Cannabinoide CB2/agonistas , Soporte de Peso
14.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34681188

RESUMEN

Systems pharmacology employs computational and mathematical methods to study the network of interactions a drug may have within complex biological pathways. These tools are well suited for research on multitarget drugs, such as natural compounds, in diseases with complex etiologies, such as osteoarthritis (OA). The present study focuses on cannabidiol (CBD), a non-psychoactive constituent of cannabis, targeting over 60 distinct molecular targets as a potential treatment for OA, a degenerative joint disease leading to chronic pain with a neuropathic component. We successfully identified molecular targets of CBD that were relevant in the context of OA treatment with both beneficial and detrimental effects. Our findings were confirmed by in vivo and molecular studies. A key role of PPARγ in mediating the therapeutic potential of CBD was revealed, whereas upregulation of multiple transient receptor potential channels demasked CBD-induced heat hyperalgesia. Our findings pave the way for novel CBD-based therapy with improved therapeutic potential but also encourage the use of bioinformatic tools to predict the mechanism of action of CBD in different conditions. We have also created an accessible web tool for analogous analysis of CBD pharmacology in the context of any disease of interest and made it publicly available.

15.
Pharmacol Rep ; 73(3): 681-699, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34050525

RESUMEN

Over the last several decades, the percentage of patients suffering from different forms of arthritis has increased due to the ageing population and the increasing risk of civilization diseases, e.g. obesity, which contributes to arthritis development. Osteoarthritis and rheumatoid arthritis are estimated to affect 50-60% of people over 65 years old and cause serious health and economic problems. Currently, therapeutic strategies are limited and focus mainly on pain attenuation and maintaining joint functionality. First-line therapies are nonsteroidal anti-inflammatory drugs; in more advanced stages, stronger analgesics, such as opioids, are required, and in the most severe cases, joint arthroplasty is the only option to ensure joint mobility. Cannabinoids, both endocannabinoids and synthetic cannabinoid receptor (CB) agonists, are novel therapeutic options for the treatment of arthritis-associated pain. CB1 receptors are mainly located in the nervous system; thus, CB1 agonists induce many side effects, which limit their therapeutic efficacy. On the other hand, CB2 receptors are mainly located in the periphery on immune cells, and CB2 modulators exert analgesic and anti-inflammatory effects in vitro and in vivo. In the current review, novel research on the cannabinoid-mediated analgesic effect on arthritis is presented, with particular emphasis on the role of the CB2 receptor in arthritis-related pain and the suppression of inflammation.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Cannabinoides/farmacología , Artropatías/tratamiento farmacológico , Dolor/tratamiento farmacológico , Receptor Cannabinoide CB2/metabolismo , Analgésicos/farmacología , Animales , Humanos , Artropatías/metabolismo , Dolor/metabolismo
16.
Front Pharmacol ; 12: 643605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995052

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease that primarily affects people over 65 years old. During OA progression irreversible cartilage, synovial membrane and subchondral bone degradation is observed, which results in the development of difficult-to-treat chronic pain. One of the most important factors in OA progression is joint inflammation. Both proinflammatory and anti-inflammatory factors, as well as extracellular matrix degradation enzymes (matrix metalloproteinases (MMPs), play an important role in disease development. One of the most widely used animal OA models involves an intra-articular injection of sodium monoiodoacetate (MIA) directly into the joint capsule, which results in glycolysis inhibition in chondrocytes and cartilage degeneration. This model mimics the degenerative changes observed in OA patients. However, the dose of MIA varies in the literature, ranging from 0.5 to 4.8 mg. The aim of our study was to characterize grading changes after injection of 1, 2 or 3 mg of MIA at the behavioral and molecular levels over a 28-day period. In the behavioral studies, MIA injection at all doses resulted in a gradual increase in tactile allodynia and resulted in abnormal weight bearing during free walking sequences. At several days post-OA induction, cartilage, synovial membrane and synovial fluid samples were collected, and qPCR and Western blot analyses were performed. We observed significant dose- and time-dependent changes in both gene expression and protein secretion levels. Inflammatory factors (CCL2, CXCL1, IL-1ß, COMP) increased at the beginning of the experiment, indicating a transient inflammatory state connected to the MIA injection and, in more severe OA, also in the advanced stages of the disease. Overall, the results in the 1 mg MIA group were not consistently clear, indicating that the lowest tested dose may not be sufficient to induce long-lasting OA-like changes at the molecular level. In the 2 mg MIA group, significant alterations in the measured factors were observed. In the 3 mg MIA group, MMP-2, MMP-3, MMP-9, and MMP-13 levels showed very strong upregulation, which may cause overly strong reactions in animals. Therefore, a dose of 2 mg appears optimal, as it induces significant but not excessive OA-like changes in a rat model.

17.
Biomed Pharmacother ; 136: 111283, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33482616

RESUMEN

BACKGROUND AND PURPOSE: The endocannabinoid system became a promising target for osteoarthritis (OA) treatment. Functional selectivity of cannabinoids may increase their beneficial properties while reducing side effects. The aim of the present study was to evaluate the analgesic potential of two functionally biased CB2 agonists in different treatment regimens to propose the best pharmacological approach for OA management. EXPERIMENTAL APPROACH: Two functionally selective CB2 agonists were administered i.p. - JWH133 (cAMP biased) and GW833972A (ß-arrestin biased), in a chemically induced model of OA in rats. The drugs were tested in acute and chronic treatment regimens. Analgesic effects were assessed by pressure application measurement and kinetic weight bearing. X-ray microtomography was used for the morphometric analysis of the femur's subchondral bone tissue. Underlying biochemical changes were analysed via RT-qPCR. KEY RESULTS: Dose-response studies established the effective dose for both JWH133 and GW833972A. In chronic treatment paradigms, JWH133 was able to elicit analgesia throughout the course of the experiment, whereas GW833972A lost its efficacy after 2 days of treatment. Later studies revealed improvement in subchondral bone architecture and decrement of matrix metalloproteinases and proinflammatory factors expression following JWH133 chronic treatment. CONCLUSION AND IMPLICATIONS: Data presents analgesic and disease-modifying potential of CB2 agonists in OA treatment. Moreover, the study revealed more pronounced tolerance development for analgesic effects of the ß-arrestin biased CB2 agonist GW833972A. These results provide a better understanding of the molecular underpinnings of the anti-nociceptive potential of CB2 agonists and may improve drug development processes for any cannabinoid-based chronic pain therapy.


Asunto(s)
Analgésicos/farmacología , Artralgia/prevención & control , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Articulaciones/efectos de los fármacos , Osteoartritis/prevención & control , Umbral del Dolor/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Receptor Cannabinoide CB2/agonistas , Animales , Artralgia/etiología , Artralgia/metabolismo , Artralgia/fisiopatología , Modelos Animales de Enfermedad , Tolerancia a Medicamentos , Ácido Yodoacético , Articulaciones/metabolismo , Articulaciones/fisiopatología , Masculino , Osteoartritis/inducido químicamente , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Ratas Wistar , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal , Factores de Tiempo
18.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238607

RESUMEN

Cannabis has a long history of medical use. Although there are many cannabinoids present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the two components found in the highest concentrations. CBD itself does not produce typical behavioral cannabimimetic effects and was thought not to be responsible for psychotropic effects of cannabis. Numerous anecdotal findings testify to the therapeutic effects of CBD, which in some cases were further supported by research findings. However, data regarding CBD's mechanism of action and therapeutic potential are abundant and omnifarious. Therefore, we review the basic research regarding molecular mechanism of CBD's action with particular focus on its analgesic potential. Moreover, this article describes the detailed analgesic and anti-inflammatory effects of CBD in various models, including neuropathic pain, inflammatory pain, osteoarthritis and others. The dose and route of the administration-dependent effect of CBD, on the reduction in pain, hyperalgesia or allodynia, as well as the production of pro and anti-inflammatory cytokines, were described depending on the disease model. The clinical applications of CBD-containing drugs are also mentioned. The data presented herein unravel what is known about CBD's pharmacodynamics and analgesic effects to provide the reader with current state-of-art knowledge regarding CBD's action and future perspectives for research.


Asunto(s)
Cannabidiol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Manejo del Dolor/tendencias , Analgésicos/uso terapéutico , Cannabinoides/uso terapéutico , Dronabinol/uso terapéutico , Humanos , Hiperalgesia/patología , Neuralgia/patología
19.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036283

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease manifested by movement limitations and chronic pain. Endocannabinoid system (ECS) may modulate nociception via cannabinoid and TRPV1 receptors. The purpose of our study was to examine alterations in the spinal and joint endocannabinoid system during pain development in an animal model of OA. Wistar rats received intra-articular injection of 3mg of sodium monoiodoacetate (MIA) into the knee joint. Animals were sacrificed on day 2, 7, 14, 21, 28 after injection and lumbar spinal cord, cartilage and synovium were collected. Changes in the transcription levels of the ECS elements were measured. At the spinal level, gene expression levels of the cannabinoid and TRPV1 receptors as well as enzymes involved in anandamide synthesis and degradation were elevated in the advanced OA phase. In the joint, an important role of the synovium was demonstrated, since cartilage degeneration resulted in attenuation of the changes in the gene expression. Enzymes responsible for anandamide synthesis and degradation were upregulated particularly in the early stages of OA, presumably in response to early local joint inflammation. The presented study provides missing information about the MIA-induced OA model and encourages the development of a therapy focused on the molecular role of ECS.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Osteoartritis/metabolismo , Dolor/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Ácidos Araquidónicos/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Endocannabinoides/genética , Regulación de la Expresión Génica , Inyecciones Intraarticulares , Ácido Yodoacético/efectos adversos , Ácido Yodoacético/toxicidad , Articulación de la Rodilla/metabolismo , Osteoartritis/complicaciones , Osteoartritis/genética , Dolor/etiología , Dolor/genética , Ratas , Ratas Wistar , Canales Catiónicos TRPV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA