Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys J ; 121(10): 1949-1962, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35421389

RESUMEN

Measurements of protein-mediated DNA looping reveal that in vivo conditions favor the formation of loops shorter than those that occur in vitro, yet the precise physical mechanisms underlying this shift remain unclear. To understand the extent to which in vivo supercoiling may explain these shifts, we develop a theoretical model based on coarse-grained molecular simulation and analytical transition state theory, enabling us to map out looping energetics and kinetics as a function of two key biophysical parameters: superhelical density and loop length. We show that loops on the scale of a persistence length respond to supercoiling over a much wider range of superhelical densities and to a larger extent than longer loops. This effect arises from a tendency for loops to be centered on the plectonemic end region, which bends progressively more tightly with superhelical density. This trend reveals a mechanism by which supercoiling favors shorter loop lengths. In addition, our model predicts a complex kinetic response to supercoiling for a given loop length, governed by a competition between an enhanced rate of looping due to torsional buckling and a reduction in looping rate due to chain straightening as the plectoneme tightens at higher superhelical densities. Together, these effects lead to a flattening of the kinetic response to supercoiling within the physiological range for all but the shortest loops. Using experimental estimates for in vivo superhelical densities, we discuss our model's ability to explain available looping data, highlighting both the importance of supercoiling as a regulatory force in genetics and the additional complexities of looping phenomena in vivo.


Asunto(s)
ADN Superhelicoidal , Simulación por Computador , Cinética , Conformación de Ácido Nucleico
2.
Biophys J ; 114(2): 278-282, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29248150

RESUMEN

Single-molecule methods provide direct measurements of macromolecular dynamics, but are limited by the number of degrees of freedom that can be followed at one time. High-resolution rotor bead tracking (RBT) measures DNA torque, twist, and extension, and can be used to characterize the structural dynamics of DNA and diverse nucleoprotein complexes. Here, we extend RBT to enable simultaneous monitoring of additional degrees of freedom. Fluorescence-RBT (FluoRBT) combines magnetic tweezers, infrared evanescent scattering, and single-molecule FRET imaging, providing real-time multiparameter measurements of complex molecular processes. We demonstrate the capabilities of FluoRBT by conducting simultaneous measurements of extension and FRET during opening and closing of a DNA hairpin under tension, and by observing simultaneous changes in FRET and torque during a transition between right-handed B-form and left-handed Z-form DNA under controlled supercoiling. We discover unanticipated continuous changes in FRET with applied torque, and also show how FluoRBT can facilitate high-resolution FRET measurements of molecular states, by using a mechanical signal as an independent temporal reference for aligning and averaging noisy fluorescence data. By combining mechanical measurements of global DNA deformations with FRET measurements of local conformational changes, FluoRBT will enable multidimensional investigations of systems ranging from DNA structures to large macromolecular machines.


Asunto(s)
ADN , Transferencia Resonante de Energía de Fluorescencia , Ensayo de Materiales/instrumentación , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...