Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Intervalo de año de publicación
1.
Glob Chang Biol ; 29(19): 5634-5651, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37439293

RESUMEN

Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.


Asunto(s)
Ecosistema , Kelp , Animales , Conservación de los Recursos Naturales/métodos , Biomasa , Invertebrados , Bosques , Peces
2.
Sci Rep ; 13(1): 1405, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697490

RESUMEN

Anthropogenic stressors from climate change can affect individual species, community structure, and ecosystem function. Marine heatwaves (MHWs) are intense thermal anomalies where water temperature is significantly elevated for five or more days. Climate projections suggest an increase in the frequency and severity of MHWs in the coming decades. While there is evidence that marine protected areas (MPAs) may be able to buffer individual species from climate impacts, there is not sufficient evidence to support the idea that MPAs can mitigate large-scale changes in marine communities in response to MHWs. California experienced an intense MHW and subsequent El Niño Southern Oscillation event from 2014 to 2016. We sought to examine changes in rocky reef fish communities at four MPAs and associated reference sites in relation to the MHW. We observed a decline in taxonomic diversity and a profound shift in trophic diversity inside and outside MPAs following the MHW. However, MPAs seemed to dampen the loss of trophic diversity and in the four years following the MHW, taxonomic diversity recovered 75% faster in the MPAs compared to reference sites. Our results suggest that MPAs may contribute to long-term resilience of nearshore fish communities through both resistance to change and recovery from warming events.


Asunto(s)
Ecosistema , Peces , Animales
3.
PLoS One ; 16(5): e0251499, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33984011

RESUMEN

The yellowtail rockfish, Sebastes flavidus, is a widespread and abundant mesopredator in the California Current Large Marine Ecosystem. We utilized stomach content and stable isotope analyses to investigate the trophic ecology of this species at three sites off central California just before (August-October 2013) and during (August and October 2014) a marine heat wave. Sebastes flavidus largely consumed pelagic prey (zooplankton and micronekton). Diets were dominated by tunicates (salps and pyrosomes), pelagic crustaceans (euphausiids, hyperid amphipods, larval decapods), and fishes, with the relative contribution of these prey taxa varying spatially (sample location, longitude, depth) and temporally (year, month), based on complementary multivariate analyses. Prey-specific indices demonstrated that individual S. flavidus diet composition typically was dominated by one of these prey groups, and that prey switching occurred based on the relative availability of prey and their energetic importance. Stable isotope analysis of δ15N indicated that the S. flavidus populations sampled in 2014 had been feeding at an elevated trophic position and more variable prey spectrum relative to 2013, probably as a consequence of greater piscivory and the incorporation of temporal changes in diet composition. Because its opportunistic feeding behavior reflects the dynamism and heterogeneity of the pelagic forage preyscape, S. flavidus may be an important ecosystem indicator species. For example, the novel incorporation of pyrosomes as a large portion of the diet of S. flavidus during 2013-2014 directly related to the massive increase in pyrosome abundance in the California Current during the 2014 marine heat wave.


Asunto(s)
Peces/fisiología , Animales , California , Ecosistema , Conducta Alimentaria , Respuesta al Choque Térmico , Calor , Conducta Predatoria
4.
PeerJ ; 8: e10146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194393

RESUMEN

Recent marine spatial planning efforts, including the management and monitoring of marine protected areas (MPAs), increasingly focus on the importance of stakeholder engagement. For nearly 15 years, the California Collaborative Fisheries Research Program (CCFRP) has partnered volunteer anglers with researchers, the fishing industry, and resource managers to monitor groundfishes in California's network of MPAs. While the program has succeeded in generating sustained biological observations, we know little about volunteer angler demography or the impact of participation on their perceptions and opinions on fisheries data or MPAs. In this study we surveyed CCFRP volunteers to learn about (a) volunteer angler demographics and attitudes toward groundfish management and stock health, (b) volunteer angler motivations for joining and staying in the program, and (c) whether participation in the program influenced volunteer angler opinions on the quality of fisheries data used in resource management and the establishment of MPAs in California. CCFRP volunteers were older and had higher fishing avidity than average within the California recreational angling community. Many self-identified as more conservation-minded than their peers in the recreational fishing community and had positive views of California groundfish management and stock health. Participation in science and giving back to fisheries resources were major motivating factors in their decision to become and remain CCFRP volunteers. Angler opinions toward MPAs were more positive after volunteering with CCFRP. Those who had volunteered for seven or more years with CCFRP were more likely than not to gain a positive opinion of MPAs. Our survey results provide evidence that long-term engagement of stakeholders in collaborative research positively influences stakeholder opinions regarding marine resource management, and highlights CCFRP's success in engaging citizen science stakeholders in collaborative fisheries research.

5.
Sci Rep ; 7(1): 526, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28373662

RESUMEN

A characterization of the thermal ecology of fishes is needed to better understand changes in ecosystems and species distributions arising from global warming. The movement of wild animals during changing environmental conditions provides essential information to help predict the future thermal response of large marine predators. We used acoustic telemetry to monitor the vertical movement activity of the common dentex (Dentex dentex), a Mediterranean coastal predator, in relation to the oscillations of the seasonal thermocline during two summer periods in the Medes Islands marine reserve (NW Mediterranean Sea). During the summer stratification period, the common dentex presented a clear preference for the warm suprathermoclinal layer, and adjusted their vertical movements following the depth changes of the thermocline. The same preference was also observed during the night, when fish were less active. Due to this behaviour, we hypothesize that inter-annual thermal oscillations and the predicted lengthening of summer conditions will have a significant positive impact on the metabolic efficiency, activity levels, and population dynamics of this species, particularly in its northern limit of distribution. These changes in the dynamics of an ecosystem's keystone predator might cascade down to lower trophic levels, potentially re-defining the coastal fish communities of the future.


Asunto(s)
Ecosistema , Peces , Conducta Predatoria , Animales , Calentamiento Global , Mar Mediterráneo , Dinámica Poblacional , Telemetría , Temperatura
6.
PLoS One ; 11(12): e0168645, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28002499

RESUMEN

Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Peces/fisiología , Animales , Ecosistema , Grabación en Video
7.
Ecol Appl ; 26(8): 2675-2692, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27907261

RESUMEN

Integral projection models (IPMs) have a number of advantages over matrix-model approaches for analyzing size-structured population dynamics, because the latter require parameter estimates for each age or stage transition. However, IPMs still require appropriate data. Typically they are parameterized using individual-scale relationships between body size and demographic rates, but these are not always available. We present an alternative approach for estimating demographic parameters from time series of size-structured survey data using a Bayesian state-space IPM (SSIPM). By fitting an IPM in a state-space framework, we estimate unknown parameters and explicitly account for process and measurement error in a dataset to estimate the underlying process model dynamics. We tested our method by fitting SSIPMs to simulated data; the model fit the simulated size distributions well and estimated unknown demographic parameters accurately. We then illustrated our method using nine years of annual surveys of the density and size distribution of two fish species (blue rockfish, Sebastes mystinus, and gopher rockfish, S. carnatus) at seven kelp forest sites in California. The SSIPM produced reasonable fits to the data, and estimated fishing rates for both species that were higher than our Bayesian prior estimates based on coast-wide stock assessment estimates of harvest. That improvement reinforces the value of being able to estimate demographic parameters from local-scale monitoring data. We highlight a number of key decision points in SSIPM development (e.g., open vs. closed demography, number of particles in the state-space filter) so that users can apply the method to their own datasets.


Asunto(s)
Teorema de Bayes , Modelos Biológicos , Animales , California , Demografía , Dinámica Poblacional
8.
PLoS One ; 11(7): e0159813, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27437692

RESUMEN

It is important to account for the movement behaviour of fishes when designing effective marine protected areas (MPAs). Fish movements occur across different spatial and temporal scales and understanding the variety of movements is essential to make correct management decisions. This study describes in detail the movement patterns of an economically and commercially important species, Diplodus sargus, within a well-enforced Mediterranean MPA. We monitored horizontal and vertical movements of 41 adult individuals using passive acoustic telemetry for up to one year. We applied novel analysis and visualization techniques to get a comprehensive view of a wide range of movements. D. sargus individuals were highly territorial, moving within small home ranges (< 1 km2), inside which they displayed repetitive diel activity patterns. Extraordinary movements beyond the ordinary home range were observed under two specific conditions. First, during stormy events D. sargus presented a sheltering behaviour, moving to more protected places to avoid the disturbance. Second, during the spawning season they made excursions to deep areas (> 50 m), where they aggregated to spawn. This study advances our understanding about the functioning of an established MPA and provides important insights into the biology and management of a small sedentary species, suggesting the relevance of rare but important fish behaviours.


Asunto(s)
Migración Animal/fisiología , Conducta Animal/fisiología , Biología Marina , Perciformes/fisiología , Estimulación Acústica , Animales , Conservación de los Recursos Naturales , Ecosistema , Fenómenos de Retorno al Lugar Habitual/fisiología , Mar Mediterráneo , Estaciones del Año , Telemetría
9.
Mar Environ Res ; 116: 1-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26922044

RESUMEN

Fish populations are often comprised of individuals that use habitats and associated resources in different ways. We placed sonic transmitters in, and tracked movements of, white sea bream (Diplodus sargus sargus) in the no-take zone of a Mediterranean marine protected area: the Torre Guaceto marine protected area, (Adriatic Sea, Italy). Tagged fish displayed three types of diel activity patterns in three different habitats: sand, rocky reefs and "matte" of the seagrass Posidonia oceanica. Individuals were more active during the day than at night. Overall, white sea bream displayed a remarkable behavioural plasticity in habitat use. Our results indicate that the observed behavioural plasticity in the marine protected area could be the result of multiple ecological and environmental drivers such as size, sex and increased intra-specific competition. Our findings support the view that habitat diversity helps support high densities of fishes.


Asunto(s)
Conducta Animal/fisiología , Ecosistema , Fotoperiodo , Dorada/fisiología , Animales , Conservación de los Recursos Naturales , Mar Mediterráneo , Actividad Motora/fisiología
10.
PLoS One ; 10(3): e0118992, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25790464

RESUMEN

Globally, small-scale fisheries are influenced by dynamic climate, governance, and market drivers, which present social and ecological challenges and opportunities. It is difficult to manage fisheries adaptively for fluctuating drivers, except to allow participants to shift effort among multiple fisheries. Adapting to changing conditions allows small-scale fishery participants to survive economic and environmental disturbances and benefit from optimal conditions. This study explores the relative influence of large-scale drivers on shifts in effort and outcomes among three closely linked fisheries in Monterey Bay since the Magnuson-Stevens Fisheries Conservation and Management Act of 1976. In this region, Pacific sardine (Sardinops sagax), northern anchovy (Engraulis mordax), and market squid (Loligo opalescens) fisheries comprise a tightly linked system where shifting focus among fisheries is a key element to adaptive capacity and reduced social and ecological vulnerability. Using a cluster analysis of landings, we identify four modes from 1974 to 2012 that are dominated (i.e., a given species accounting for the plurality of landings) by squid, sardine, anchovy, or lack any dominance, and seven points of transition among these periods. This approach enables us to determine which drivers are associated with each mode and each transition. Overall, we show that market and climate drivers are predominantly attributed to dominance transitions. Model selection of external drivers indicates that governance phases, reflected as perceived abundance, dictate long-term outcomes. Our findings suggest that globally, small-scale fishery managers should consider enabling shifts in effort among fisheries and retaining existing flexibility, as adaptive capacity is a critical determinant for social and ecological resilience.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Decapodiformes/crecimiento & desarrollo , Ecosistema , Explotaciones Pesqueras/economía , Explotaciones Pesqueras/métodos , Peces/crecimiento & desarrollo , Modelos Económicos , Animales , Bahías , California , Clima , Análisis por Conglomerados , Organización y Administración
11.
PLoS One ; 10(3): e0118502, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25760856

RESUMEN

Meta-analyses of field studies have shown that biomass, density, species richness, and size of organisms protected by no-take marine reserves generally increase over time. The magnitude and timing of changes in these response variables, however, vary greatly and depend upon the taxonomic groups protected, size and type of reserve, oceanographic regime, and time since the reserve was implemented. We conducted collaborative, fishery-independent surveys of fishes for seven years in and near newly created marine protected areas (MPAs) in central California, USA. Results showed that initially most MPAs contained more and larger fishes than associated reference sites, likely due to differences in habitat quality. The differences between MPAs and reference sites did not greatly change over the seven years of our study, indicating that reserve benefits will be slow to accumulate in California's temperate eastern boundary current. Fishes in an older reserve that has been closed to fishing since 1973, however, were significantly more abundant and larger than those in associated reference sites. This indicates that reserve benefits are likely to accrue in the California Current ecosystem, but that 20 years or more may be needed to detect significant changes in response variables that are due to MPA implementation. Because of the high spatial and temporal variability of fish recruitment patterns, long-term monitoring is needed to identify positive responses of fishes to protection in the diverse set of habitats in a dynamic eastern boundary current. Qualitative estimates of response variables, such as would be obtained from an expert opinion process, are unlikely to provide an accurate description of MPA performance. Similarly, using one species or one MPA as an indicator is unlikely to provide sufficient resolution to accurately describe the performance of multiple MPAs.


Asunto(s)
Peces , Distribución Animal , Animales , California , Conservación de los Recursos Naturales , Ecosistema , Explotaciones Pesqueras , Dinámica Poblacional
12.
PLoS One ; 9(6): e98976, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24902049

RESUMEN

Olive (Sebastes serranoides), black (Sebastes melanops), and blue rockfish (Sebastes mystinus) are all common inhabitants of nearshore ecosystems on the West coast of North America and important components of the recreational fishery off California. Acoustic monitoring studies indicate that olive rockfish are highly residential and that black rockfish are capable of long migrations and have less site fidelity; yet little is known about the long-term movements of blue rockfish. External tag-recapture studies indicate that blue rockfish may have intermediate movements relative to these congener nearshore species. To better understand the site fidelity, and daily and seasonal movements of blue rockfish over long (>1-year) time scales, we placed acoustic transmitters into 21 adult blue rockfish (30-41 cm total length) in Carmel Bay, California. Blue rockfish displayed intermediate movement patterns and residency relative to other similar kelp forest rockfish species. Two-thirds of tagged blue rockfish (13 fish) exhibited high residency to the study area (>12 mo). When in residence, mean home range of blue rockfish was 0.23 km2, however as many as 30% of tagged blue rockfish shifted their core home range area during the study. Most shifts in home range occurred during upwelling season, and tagged fish moved up to 3.1 km when in residence. Blue rockfish with short residence times were last detected in the study area in late winter and early spring. Blue rockfish were observed at shallower depths during day than night, likely indicative of diurnal feeding. However, over longer time scales, blue rockfish were detected at deeper depths during upwelling periods and with increased wave heights. Daily and seasonal vertical movements of blue rockfish may be influenced by upwelling conditions and local prey abundance.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual , Perciformes/fisiología , Animales , California , Ecosistema , Estaciones del Año
13.
Rev. biol. trop ; 60(supl.3): 347-362, nov. 2012. ilus, graf, tab
Artículo en Inglés | LILACS, SaludCR | ID: lil-672101

RESUMEN

The deepwater faunas of oceanic islands and seamounts of the Eastern Tropical Pacific are poorly known. From 11-22 September 2009 we conducted an exploration of the deepwater areas of the Isla del Coco Marine Conservation Area, Costa Rica and a nearby seamount using a manned submersible. The goal of the exploration was to characterize the habitats and biota, and conduct quantitative surveys of the deepwater portions of Isla del Coco National Park and Las Gemelas Seamount, located about 50km southwest of Isla del Coco. We completed a total of 22 submersible dives, spanning more than 80hr underwater, and collected a total of 36hr of video. We surveyed habitats from 50-402m and observed more than 45 species of fishes, some of which have not yet been described and are likely new to science. The diversity of fish species in deep water at Isla del Coco National Park was lower than the diversity of fishes in shallow water, and eight species groups accounted for more than 95% of the total fish biomass. The combined density of all fish species was higher at Las Gemelas Seamount (253 fishes/100m²) than at Isla del Coco National Park (138 fishes/100m²). The combined density of fishes in habitats comprised primarily of bedrock or large boulders outcrops was more than three times as high at Las Gemelas Seamount as it was at Isla del Coco National Park. This discrepancy was caused by the extremely high concentration of Anthiinae fishes in rocky habitats at Las Gemelas Seamount. Densities of fishes in the other habitats were similar between the two sites. Similarly, when estimates of fish density were plotted by slope categories the density was much greater on steep slopes, which were usually comprised of rock habitats. Also, the density of fishes was greatest on high rugosity habitats. Results of these submersible surveys indicate that seamounts in the tropical eastern Pacific Ocean may be an important source of biodiversity and that more quantitative surveys are needed to characterize the fauna of the region.


Las faunas de aguas profundas de islas oceánicas del Pacífico Tropical Oriental se conocen poco y de los montes submarinos nada. Del 11 al 22 de septiembre de 2009 llevamos a cabo una exploración de zonas profundos del Área de Conservación Marina Isla del Coco utilizando un submarino tripulado. El objetivo del estudio fue caracterizar los hábitats y las comunidades, y cuantificar las poblaciones de peces de profundidad en la Isla del Coco y los montes submarinos Las Gemelas, situados a 50km al suroeste de la Isla del Coco. Realizamos 22 inmersiones con el submarino, con más de 80 horas de observación submarina, y filmamos 30 horas de video. Investigamos hábitats entre 50-402m de profundidad y observamos más de 45 especies de peces, algunas de las cuales son especies nuevas para la ciencia. La diversidad de peces profundos en la Isla del Coco fue menor que en aguas someras, y ocho grupos de especies representaron más del 95% de la biomasa total de peces. La densidad combinada de peces fue 253 peces/100m² en Las Gemelas y 138 peces/100m² en la Isla del Coco.


Asunto(s)
Océanos y Mares , Conservación de los Recursos Naturales , Biodiversidad , Peces , Costa Rica
14.
Rev. biol. trop ; 60(supl.3): 303-319, nov. 2012. ilus, graf, tab
Artículo en Inglés | LILACS, SaludCR | ID: lil-672098

RESUMEN

The deepwater faunas of oceanic islands and seamounts of the Eastern Tropical Pacific are poorly known. From 11-22 September 2009, we conducted an exploration of the deepwater areas around Isla del Coco National Park and Las Gemelas Seamount, located about 50km southwest of Isla del Coco, Costa Rica using a manned submersible to survey the seafloor habitats. The goal of the exploration was to characterize the habitats and biota, and conduct quantitative surveys of the deepwater portions of Isla del Coco National Park and Las Gemelas. We completed a total of 22 successful submersible dives, spanning more than 80hr underwater, and collected a total of 36hr of video. With respect to invertebrates, our objectives were to gather quantitative information on species composition, density, distribution and habitat associations as well as to compare the invertebrate communities between the two sites. A total of 7 172 invertebrates were counted from analysis of the video collected on this project. Larger organisms were counted and placed into 27 taxonomic groups to characterize the deepwater invertebrate fauna of Las Gemelas Seamount and Isla del Coco National Park. The Shannon-Weiner Index for biodiversity (H’) was calculated to be 0.14 ± 0.02 for Isla del Coco and 0.07 ± 0.03 for Las Gemelas surveys. Although richness was fairly equal between the two sites, evenness was greater at Isla del Coco (J = 0.04 ± 0.006) when compared to Las Gemelas (J = 0.02 ± 0.01). This lower level of evenness in the community at Las Gemelas was a result of high densities of a few dominant species groups, specifically sea urchins and black corals. We also evaluated invertebrate percent cover at both Isla del Coco and Las Gemelas Seamount with respect to habitat type, slope and rugosity. Results indicated that highly rugose habitats contained the highest frequencies of all invertebrates at both sites, with the exception of glass sponges and polychaetes at Isla del Coco, which were found in greater quantities at intermediate levels of rugosity. Information obtained from these submersible surveys indicate that seamounts in the tropical eastern Pacific Ocean may be an important source of biodiversity and that more quantitative surveys are needed to characterize the fauna of the region.


La fauna de aguas profundas de islas oceánicas y de montes submarinos del Pacífico Tropical Oriental son muy poco conocidas. Para caracterizar las faunas de aguas profundas del Parque Nacional Isla del Coco y el Monte Submarino Las Gemelas, Costa Rica, llevamos a cabo un estudio cuantitativo de los hábitats y su fauna. Se tomaron videos de transectos desde un sumergible entre 50 y 402m de profundidad del 11 al 22 de setiembre 2009. Se recolectó información cuantitativa de la composición de especies de invertebrados, densidad, distribución y hábitats asociados en ambas localidades y se comparó. Se contaron 7,172 invertebrados en los videos analizados, y se ubicaron en 27 categorías taxonómicas. El Índice de Shannon-Weiner (H’) fue de 0.14 ± 0.02 para la Isla del Coco y 0.07 ± 0.03 para Las Gemelas. La riqueza fue parecida en ambos sitios pero la equitabilidad fue mayor en la Isla del Coco (J = 0.04 ± 0.006) comparado con Las Gemelas (J = 0.02 ± 0.01). Este menor nivel de equitabilidad en Las gemelas de debió a la alta densidad de unos pocos grupos dominantes, específicamente erizos de mar y coral negro. También evaluamos el porcentaje de cobertura de los invertebrados con respecto a tipo de hábitat, pendiente y rugosidad del sustrato. Los resultados indican que hábitats con alta rugosidad contiene más invertebrados en ambos sitios, excepto la esponjas silíceas y los poliquetos en la Isla del Coco, que se encontraron en mayor cantidad en niveles intermedios de rugosidad. La información obtenida con este estudio indican que los montes submarinos en el Pacífico Tropical Oriental pueden ser una fuente importante de biodiversidad y que se necesitan más estudios cuantitativos para caracterizar la fauna de la región.


Asunto(s)
Islas del Pacífico , Fauna Marina/análisis , Biodiversidad , Invertebrados/clasificación , Muestreo , Costa Rica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...