Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(30): 11642-11653, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486973

RESUMEN

Victorins, a family of peptide toxins, produced by the fungal pathogen Cochliobolus victoriae and responsible for disease of some oat varieties, contain a ß-chlorodehydroalanine residue, ΔAla(ßCl). To determine the conformational properties of this unique dehydroamino acid, a series of model compounds was studied using X-ray, NMR, and FT-IR methods, supported by theoretical calculations. The ΔAla(ßCl) geometrical isomers differ in conformational profile. The isomer Z prefers the helical conformation α (φ, ψ = -61°, -24°), PPII type conformation ß (φ, ψ = -47°, 136°), and semiextended conformation ß2 (φ, ψ = -116°, 9°) in weakly and more polar solutions. The isomer E prefers mainly the extended conformation C5 (φ, ψ = -177°, 160°), but with an increase of the environment polarity also conformations ß (φ, ψ = -44°, 132°) and α (φ, ψ = -53°, -39°). In the most stable conformations the N-H···Cl hydrogen bond (5γ) occurs, created between the chlorine atom of the side chain and the N-H donor of the flanking amide group. The method of synthesis of the ß-chlorodehydroalanine residue is proposed, by chlorination of dehydroalanine and then the photoisomerization from the isomer Z to E. The presented results indicate that the assignment of the geometrical isomer of the ΔAla(ßCl) residue in naturally occurring victorins still remains an open question, despite being crucial for biological activity.


Asunto(s)
Micotoxinas , Toxinas Biológicas , Avena , Espectroscopía Infrarroja por Transformada de Fourier , Conformación Molecular , Péptidos/química , Conformación Proteica
2.
Pharmacol Rep ; 75(4): 995-1004, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37195561

RESUMEN

BACKGROUND: Non-steroidal anti-inflammatory drugs have been shown to inhibit the development of induced neoplasms. Our previous research demonstrated that the cytotoxicity of sulindac against melanoma cells is comparable to dacarbazine, the drug used in chemotherapy. The aim of this study was to investigate the mechanism of sulindac cytotoxicity on COLO 829 and C32 cell lines. METHODS: The influence of sundilac on the activity of selected enzymes of the antioxidant system (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of hydrogen peroxide as well as the level of proteins initiating (p53, Bax) and inhibiting (Bcl-2) apoptosis were measured in melanoma cells. RESULTS: In melanotic melanoma cells, sulindac increased the activity of SOD and the content of H2O2 but decreased the activity of CAT and GPx. The level of p53 and Bax proteins rose but the content of Bcl-2 protein was lowered. Similar results were observed for dacarbazine. In amelanotic melanoma cells, sulindac did not cause an increase in the activity of measured enzymes or any significant changes in the level of apoptotic proteins. CONCLUSION: The cytotoxic effect of sulindac in the COLO 829 cell line is connected to disturbed redox homeostasis by changing the activity of SOD, CAT, GPx, and level of H2O2. Sulindac also induces apoptosis by changing the ratio of the pro-apoptotic/anti-apoptotic protein. The presented studies indicate the possibility of developing target therapy against melanotic melanoma using sulindac.


Asunto(s)
Homeostasis , Melanoma , Proteínas Reguladoras de la Apoptosis/metabolismo , Melanoma/metabolismo , Sulindac/química , Sulindac/farmacología , Homeostasis/efectos de los fármacos , Oxidación-Reducción , Humanos , Línea Celular Tumoral , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Amino Acids ; 55(1): 33-49, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36319875

RESUMEN

Replacement of the main chain peptide bond by imidazole ring seems to be a promising tool for the peptide-based drug design, due to the specific prototropic tautomeric as well as amphoteric properties. In this study, we present that both tautomer and pH change can cause a conformational switch of the studied residues of alanine (1-4) and dehydroalanine (5-8) with the C-terminal peptide group replaced by imidazole. The DFT methods are applied and an environment of increasing polarity is simulated. The conformational maps (Ramachandram diagrams) are presented and the stability of possible conformations is discussed. The neutral forms, tautomers τ (1) and π (2), adapt the conformations αRτ (φ, ψ = - 75°, - 114°) and C7eq (φ, ψ = - 75°, 66°), respectively. Their torsion angles ψ differ by about 180°, which results in a considerable impact on the peptide chain conformation. The cation form (3) adapts both these conformations, whereas the anion analogue (4) prefers the conformations C5 (φ, ψ = - 165°, - 178°) and ß2 (φ, ψ ~ - 165°, - 3°). Dehydroamino acid analogues, the tautomers τ (5) and π (6) as well as the anion form (8), have a strong tendency toward the conformations ß2 (φ, ψ = - 179°, 0°) and C5 (φ, ψ = - 180°, 180°). The preferences of the protonated imidazolium form (7) depend on the environment. The imidazole ring, acting as a donor or acceptor of the hydrogen bonds created within the studied residues, has a profound effect on the type of conformation.


Asunto(s)
Aminoácidos , Péptidos , Aminoácidos/química , Isomerismo , Péptidos/química , Imidazoles , Concentración de Iones de Hidrógeno , Conformación Proteica
4.
J Org Chem ; 87(1): 744-750, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34533026

RESUMEN

We demonstrate that Ir-catalyzed C-C bond activation in biphenylenes followed by a reaction with tribenzocyclyne is a suitable method for synthesizing strained and unknown monoadducts with the tetradehydrotetrabenzo[a,c,e,i]cyclododecene scaffold ([12]annulenes). Modification of reaction conditions also furnished [12]annulene products with cis and/or trans double bonds formed by hydrogen transfer. The [9]annulene side product was formed upon the reaction of the benzyl radical with tribenzocyclyne during the Bergman cyclization. All isolated compounds were fully characterized by HRMS, NMR, and X-ray diffraction analysis.

5.
Biochemistry ; 60(48): 3714-3727, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34788017

RESUMEN

The 3'-5', 3'-5' cyclic dinucleotides (3'3'CDNs) are bacterial second messengers that can also bind to the stimulator of interferon genes (STING) adaptor protein in vertebrates and activate the host innate immunity. Here, we profiled the substrate specificity of four bacterial dinucleotide synthases from Vibrio cholerae (DncV), Bacillus thuringiensis (btDisA), Escherichia coli (dgcZ), and Thermotoga maritima (tDGC) using a library of 33 nucleoside-5'-triphosphate analogues and then employed these enzymes to synthesize 24 3'3'CDNs. The STING affinity of CDNs was evaluated in cell-based and biochemical assays, and their ability to induce cytokines was determined by employing human peripheral blood mononuclear cells. Interestingly, the prepared heterodimeric 3'3'CDNs bound to the STING much better than their homodimeric counterparts and showed similar or better potency than bacterial 3'3'CDNs. We also rationalized the experimental findings by in-depth STING-CDN structure-activity correlations by dissecting computed interaction free energies into a set of well-defined and intuitive terms. To this aim, we employed state-of-the-art methods of computational chemistry, such as quantum mechanics/molecular mechanics (QM/MM) calculations, and complemented the computed results with the {STING:3'3'c-di-ara-AMP} X-ray crystallographic structure. QM/MM identified three outliers (mostly homodimers) for which we have no clear explanation of their impaired binding with respect to their heterodimeric counterparts, whereas the R2 = 0.7 correlation between the computed ΔG'int_rel and experimental ΔTm's for the remaining ligands has been very encouraging.


Asunto(s)
Inmunidad Innata/genética , Proteínas de la Membrana/ultraestructura , Nucleótidos/biosíntesis , Relación Estructura-Actividad , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/ultraestructura , Cristalografía por Rayos X , Citocinas/química , Citocinas/genética , Escherichia coli/enzimología , Escherichia coli/ultraestructura , Humanos , Leucocitos Mononucleares/química , Leucocitos Mononucleares/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Nucleótidos/química , Nucleótidos/genética , Teoría Cuántica , Especificidad por Sustrato , Thermotoga maritima/enzimología , Thermotoga maritima/ultraestructura , Vibrio cholerae/enzimología , Vibrio cholerae/ultraestructura
6.
Amino Acids ; 53(5): 673-686, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33837859

RESUMEN

Post-translational modified thiazole-amino acid (Xaa-Tzl) residues have been found in macrocyclic peptides (e.g., thiopeptides and cyanobactins), which mostly inhibit protein synthesis in Gram + bacteria. Conformational study of the series of model compounds containing this structural motif with alanine, dehydroalanine, dehydrobutyrine and dehydrophenylalanine were performed using DFT method in various environments. The solid-state crystal structure conformations of thiazole-amino acid residues retrieved from the Cambridge Structural Database were also analysed. The studied structural units tend to adopt the unique semi-extended ß2 conformation; which is stabilised mainly by N-H⋯NTzl hydrogen bond, and for dehydroamino acids also by π-electron conjugation. The conformational preferences of amino acids with a thiazole ring were compared with oxazole analogues and the role of the sulfur atom in stabilising the conformations of studied peptides was discussed.


Asunto(s)
Aminoácidos/química , Tiazoles/química , Enlace de Hidrógeno , Conformación Molecular , Péptidos/síntesis química , Péptidos/química
7.
Molecules ; 25(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287255

RESUMEN

In this work, the nuclear magnetic resonance (NMR) and IR spectroscopic markers of the complexation between 5-fluorouracil (5-FU) and ß-cyclodextrin (ß-CD) in solid state and in aqueous solution are investigated. In the attenuated total reflectance(ATR) spectra of 5-FU/ß-CD products obtained by physical mixing, kneading and co-precipitation, we have identified the two most promising marker bands that could be used to detect complex formations: the C=O and C-F stretching bands of 5-FU that experience a blue shift by ca. 8 and 2 cm-1 upon complexation. The aqueous solutions were studied by NMR spectroscopy. As routine NMR spectra did not show any signs of complexation, we have analyzed the diffusion attenuation of spin-echo signals and the dependence of the population factor of slowly diffusing components on the diffusion time (diffusion NMR of pulsed-field gradient (PFG) NMR). The analysis has revealed that, at each moment, ~60% of 5-FU molecules form a complex with ß-CD and its lifetime is ca. 13.5 ms. It is likely to be an inclusion complex, judging from the independence of the diffusion coefficient of ß-CD on complexation. The obtained results could be important for future attempts of finding better methods of targeted anticancer drug delivery.


Asunto(s)
Fluorouracilo/química , beta-Ciclodextrinas/química , Antineoplásicos/química , Difusión , Sistemas de Liberación de Medicamentos/métodos , Espectroscopía de Resonancia Magnética/métodos , Solubilidad
8.
ACS Appl Mater Interfaces ; 11(21): 19087-19095, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31062573

RESUMEN

The influences of chemical and electronic structures on the photophysical properties of polymeric carbon nitrides (PCNs) photocatalysts, which govern the microscopic mechanisms of the superior photocatalytic activity under visible-light irradiation, have been resolved in this work. Time-resolved photoluminescence and in situ electron paramagnetic resonance measurements indicate that the photoexcited electrons in the fractured PCNs swiftly transfer to the C2p-localized states where the trapped photoelectrons exhibit longer lifetime compared to those in the ordinary PCNs. Moreover, the structure deviation at the carbon (Cb) atoms around the bridging sites of heptazine ring units, where trapped photoelectrons are localized, has been determined in the fractured PCNs based on the 13C solid-state nuclear magnetic resonance spectra and the density functional theory calculations. Accordingly, the formation of fractured PCNs by breaking the in-plane hydrogen bonds at a high temperature is a promising strategy for the enhancement of photocatalytic activity.

9.
J Phys Chem Lett ; 8(1): 131-136, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27959543

RESUMEN

The bimolecular gas-phase reaction of ground-state atomic silicon (Si; 3P) with disilane (Si2H6; 1A1g) was explored under single-collision conditions in a crossed molecular beam machine at a collision energy of 21 kJ mol-1. Combined with electronic structure calculations, the results suggest the formation of Si3H4 isomer(s) along with molecular hydrogen via indirect scattering dynamics through Si3H6 collision complex(es) and intersystem crossing from the triplet to the singlet surface. The nonadiabatic reaction dynamics can synthesize the energetically accessible singlet Si3H4 isomers in overall exoergic reaction(s) (-93 ± 21 kJ mol-1). All reasonable reaction products are either cyclic or hydrogen-bridged suggesting extensive isomerization processes from the reactants via the initially formed collision complex(es) to the fragmenting singlet intermediate(s). The underlying chemical dynamics of the silicon-disilane reaction are quite distinct from the isovalent carbon-ethane system that does not depict any reactivity at all, and open the door for an unconventional gas phase synthesis of hitherto elusive organosilicon molecules under single-collision conditions.

10.
Biopolymers ; 106(3): 283-94, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27061820

RESUMEN

Dehydrophenylalanine, ΔPhe, is the most commonly studied α,ß-dehydroamino acid. In nature, further modifications of the α,ß-dehydroamino acids were found, for example, replacement of the C-terminal amide group by oxazole ring. The conformational properties of oxazole-dehydrophenylalanine residue (ΔPhe-Ozl), both isomers Z and E, were investigated. To determine all possible conformations, theoretical calculations were performed using Ac-(Z/E)-ΔPhe-Ozl(4-Me) model compounds at M06-2X/6-31++G(d,p) level of theory. Ac-(Z/E)-ΔPhe-Ozl-4-COOEt compounds were synthesized and the conformational preferences of each isomer, Z and E, were investigated using FTIR and NMR-NOE in solutions of increasing polarity (CHCl3 , DMSO-d6). The solid-state low-temperature structures of Ac-(Z)-ΔPhe-Ozl-4-COOEt and its intermediate analog Ac-(Z)-ΔPhe-Ozn(4-OH)-4-COOEt were also determined. In a weakly polar environment, the ΔPhe-Ozl residue has a tendency to adopt the conformation ß2 with the calculated φ and ψ angles of -127° and 0° for the isomer Z and -170° and 26° for the isomer E. The increase of environment polarity favors the helical conformation α and the beta-turn like conformation ß, but the conformation ß2 seems to be still accessible. The (E)-ΔPhe-Ozl residue can be obtained from the isomer Z in photoisomerization reaction. However, hydroxyl-oxazoline-dehydrophenylalanine ΔPhe-Ozn(4-OH) decomposes in such conditions. Alternatively, (E)-ΔPhe-NH2 can be applied as a substrate in the Hantzsch reaction. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 283-294, 2016.


Asunto(s)
Oxazoles/síntesis química , Fenilalanina/análogos & derivados , Cloroformo/química , Dimetilsulfóxido/química , Luz , Espectroscopía de Resonancia Magnética , Modelos Químicos , Conformación Molecular , Oxazoles/química , Fenilalanina/síntesis química , Fenilalanina/química , Procesos Fotoquímicos , Teoría Cuántica , Soluciones , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo
11.
J Phys Chem B ; 118(9): 2340-50, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24528177

RESUMEN

Oxazole ring occurs in numerous natural peptides, but conformational properties of the amino acid residue containing the oxazole ring in place of the C-terminal amide bond are poorly recognized. A series of model compounds constituted by the oxazole-amino acids occurring in nature, that is, oxazole-alanine (L-Ala-Ozl), oxazole-dehydroalanine (ΔAla-Ozl), and oxazole-dehydrobutyrine ((Z)-ΔAbu-Ozl), was investigated using theoretical calculations supported by FTIR and NMR spectra and single-crystal X-ray diffraction. It was found that the main feature of the studied oxazole-amino acids is the stable conformation ß2 with the torsion angles φ and ψ of -150°, -10° for L-Ala-Ozl, -180°, 0° for ΔAla-Ozl, and -120°, 0° for (Z)-ΔAbu-Ozl, respectively. The conformation ß2 is stabilized by the intramolecular N-H···N hydrogen bond and predominates in the low polar environment. In the case of the oxazole-dehydroamino acids, the π-electron conjugation that is spread on the oxazole ring and C(α)═C(ß) double bond is an additional stabilizing interaction. The tendency to adopt the conformation ß2 clearly decreases with increasing the polarity of environment, but still the oxazole-dehydroamino acids are considered to be more rigid and resistant to conformational changes.


Asunto(s)
Aminoácidos/química , Oxazoles/química , Alanina/análogos & derivados , Alanina/química , Aminobutiratos/química , Hidrógeno/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Teóricos , Conformación Molecular , Nitrógeno/química , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA