Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951610

RESUMEN

Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.

2.
Nat Commun ; 15(1): 978, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302450

RESUMEN

Besides the well-characterized protein network involved in the replication stress response, several regulatory RNAs have been shown to play a role in this critical process. However, it has remained elusive whether they act locally at the stressed forks. Here, by investigating the RNAs localizing on chromatin upon replication stress induced by hydroxyurea, we identified a set of lncRNAs upregulated in S-phase and controlled by stress transcription factors. Among them, we demonstrate that the previously uncharacterized lncRNA lncREST (long non-coding RNA REplication STress) is transcriptionally controlled by p53 and localizes at stressed replication forks. LncREST-depleted cells experience sustained replication fork progression and accumulate un-signaled DNA damage. Under replication stress, lncREST interacts with the protein NCL and assists in engaging its interaction with RPA. The loss of lncREST is associated with a reduced NCL-RPA interaction and decreased RPA on chromatin, leading to defective replication stress signaling and accumulation of mitotic defects, resulting in apoptosis and a reduction in tumorigenic potential of cancer cells. These findings uncover the function of a lncRNA in favoring the recruitment of replication proteins to sites of DNA replication.


Asunto(s)
Cromatina , ARN Largo no Codificante , Cromatina/genética , Replicación del ADN/genética , ARN Largo no Codificante/genética , Proteína de Replicación A/metabolismo , Fase S/genética , Daño del ADN
3.
Nat Commun ; 14(1): 4447, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488096

RESUMEN

Cells must coordinate the activation of thousands of replication origins dispersed throughout their genome. Active transcription is known to favor the formation of mammalian origins, although the role that RNA plays in this process remains unclear. We show that the ORC1 subunit of the human Origin Recognition Complex interacts with RNAs transcribed from genes with origins in their transcription start sites (TSSs), displaying a positive correlation between RNA binding and origin activity. RNA depletion, or the use of ORC1 RNA-binding mutant, result in inefficient activation of proximal origins, linked to impaired ORC1 chromatin release. ORC1 RNA binding activity resides in its intrinsically disordered region, involved in intra- and inter-molecular interactions, regulation by phosphorylation, and phase-separation. We show that RNA binding favors ORC1 chromatin release, by regulating its phosphorylation and subsequent degradation. Our results unveil a non-coding function of RNA as a dynamic component of the chromatin, orchestrating the activation of replication origins.


Asunto(s)
Cromatina , Origen de Réplica , Humanos , Animales , Complejo de Reconocimiento del Origen , Fosforilación , ARN , Mamíferos
4.
Oncogene ; 41(10): 1456-1467, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35042959

RESUMEN

In the tumor microenvironment, Cancer Associated Fibroblasts (CAFs) become activated by cancer cells and increase their secretory activity to produce soluble factors that contribute to tumor cells proliferation, invasion and dissemination to distant organs. The pro-tumorigenic transcription factor STAT3 and its canonical inducer, the pro-inflammatory cytokine IL-6, act conjunctly in a positive feedback loop that maintains high levels of IL-6 secretion and STAT3 activation in both tumor and stromal cells. Here, we demonstrate that STAT3 is essential for the pro-tumorigenic functions of murine breast cancer CAFs both in vitro and in vivo, and identify a STAT3 signature significantly enriched for genes encoding for secreted proteins. Among these, ANGPTL4, MMP13 and STC-1 were functionally validated as STAT3-dependent mediators of CAF pro-tumorigenic functions by different approaches. Both in vitro and in vivo CAFs activities were moreover impaired by MMP13 inhibition, supporting the feasibility of a therapeutic approach based on inhibiting STAT3-induced CAF-secreted proteins. The clinical potential of such an approach is supported by the observation that an equivalent CAF-STAT3 signature in humans is expressed at high levels in breast cancer stromal cells and characterizes patients with a shorter disease specific survival, including those with basal-like disease.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Neoplasias de la Mama/patología , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Femenino , Fibroblastos/metabolismo , Glicoproteínas , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/genética
5.
NAR Cancer ; 3(1): zcab002, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34316698

RESUMEN

Despite the rapid improvements in unveiling the importance of lncRNAs in all aspects of cancer biology, there is still a void in mechanistic understanding of their role in the DNA damage response. Here we explored the potential role of the oncogenic lncRNA SCAT7 (ELF3-AS1) in the maintenance of genome integrity. We show that SCAT7 is upregulated in response to DNA-damaging drugs like cisplatin and camptothecin, where SCAT7 expression is required to promote cell survival. SCAT7 silencing leads to decreased proliferation of cisplatin-resistant cells in vitro and in vivo through interfering with cell cycle checkpoints and DNA repair molecular pathways. SCAT7 regulates ATR signaling, promoting homologous recombination. Importantly, SCAT7 also takes part in proteasome-mediated topoisomerase I (TOP1) degradation, and its depletion causes an accumulation of TOP1-cc structures responsible for the high levels of intrinsic DNA damage. Thus, our data demonstrate that SCAT7 is an important constituent of the DNA damage response pathway and serves as a potential therapeutic target for hard-to-treat drug resistant cancers.

6.
Oncogene ; 40(13): 2463-2478, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33674747

RESUMEN

Recent advances in genomics unraveled several actionable mutational drivers in lung cancer, leading to promising therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. However, the tumors' acquired resistance to the newly-developed as well as existing therapies restricts life quality improvements. Therefore, we investigated the noncoding portion of the human transcriptome in search of alternative actionable targets. We identified an antisense transcript, LY6K-AS, with elevated expression in lung adenocarcinoma (LUAD) patients, and its higher expression in LUAD patients predicts poor survival outcomes. LY6K-AS abrogation interfered with the mitotic progression of lung cancer cells resulting in unfaithful chromosomal segregation. LY6K-AS interacts with and stabilizes 14-3-3 proteins to regulate the transcription of kinetochore and mitotic checkpoint proteins. We also show that LY6K-AS regulates the levels of histone H3 lysine 4 trimethylation (H3K4me3) at the promoters of kinetochore members. Cisplatin treatment and LY6K-AS silencing affect many common pathways enriched in cell cycle-related functions. LY6K-AS silencing affects the growth of xenografts derived from wildtype and cisplatin-resistant lung cancer cells. Collectively, these data indicate that LY6K-AS silencing is a promising therapeutic option for LUAD that inhibits oncogenic mitotic progression.


Asunto(s)
Proteínas 14-3-3/genética , Adenocarcinoma del Pulmón/genética , Antígenos Ly/genética , ARN Largo no Codificante/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Animales , Biomarcadores de Tumor/genética , Carcinogénesis/efectos de los fármacos , Proliferación Celular/genética , Cisplatino/farmacología , Femenino , Proteínas Ligadas a GPI/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Xenoinjertos , Histonas/genética , Humanos , Masculino , Ratones , Mitosis/genética , Pronóstico , Transcriptoma/genética
8.
Methods Mol Biol ; 2254: 273-282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33326082

RESUMEN

With the rapid revolution in RNA/DNA sequencing technologies, it is evident that mammalian genomes express tens of thousands of long noncoding RNAs (lncRNAs). Since a large majority of lncRNAs have been functionally implicated in cancer development and progression, there is an increasing appreciation for the use of antisense oligonucleotide (ASO)-based therapies targeting lncRNAs in several cancers. Despite their great potential in therapeutic applications, their use is still limited due to cellular toxicity and shortcomings in achieving required stability in biological fluids and tissue uptake. To overcome these limitations, major changes in ASO chemistry have been introduced to generate second and third generation ASOs, including locked nucleic acids (LNA) technology. Here we describe two different LNA-ASO delivery approaches, a peritumoral administration and a systemic delivery in xenograft models of lung adenocarcinoma, that significantly reduced tumor growth without inducing toxicity.


Asunto(s)
Adenocarcinoma del Pulmón/terapia , Neoplasias Pulmonares/terapia , Oligonucleótidos Antisentido/administración & dosificación , ARN Largo no Codificante/genética , Células A549 , Adenocarcinoma del Pulmón/genética , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Ratones , Oligonucleótidos Antisentido/farmacología , Proyectos Piloto , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Rev Mol Cell Biol ; 22(2): 96-118, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33353982

RESUMEN

Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades del Sistema Inmune/patología , Neoplasias/patología , Trastornos del Neurodesarrollo/patología , ARN Largo no Codificante/genética , Animales , Humanos , Enfermedades del Sistema Inmune/genética , Neoplasias/genética , Trastornos del Neurodesarrollo/genética , Transducción de Señal
10.
PLoS One ; 13(4): e0195969, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29689087

RESUMEN

The RNA that is packaged into exosomes is termed as exosomal-shuttle RNA (esRNA); however, the players, which take this subset of RNA (esRNA) into exosomes, remain largely unknown. We hypothesized that RNA binding proteins (RBPs) could serve as key players in this mechanism, by making complexes with RNAs and transporting them into exosomes during the biosynthesis of exosomes. Here, we demonstrate the presence of 30 RBPs in exosomes that were shown to form RNA-RBP complexes with both cellular RNA and exosomal-RNA species. To assess the involvement of these RBPs in RNA-transfer into exosomes, the gene transcripts encoding six of the proteins identified in exosomes (HSP90AB1, XPO5, hnRNPH1, hnRNPM, hnRNPA2B1, and MVP) were silenced by siRNA and subsequent effect on esRNA was assessed. A significant reduction of total esRNA was observed by post-transcriptional silencing of MVP, compared to other RBPs. Furthermore, to confirm the binding of MVP with esRNA, a biotinylated-MVP was transiently expressed in HEK293F cells. Higher levels of esRNA were recovered from MVP that was eluted from exosomes of transfected cells, as compared to those of non-transfected cells. Our data indicate that these RBPs could end up in exosomes together with RNA molecules in the form of RNA-ribonucleoprotein complexes, which could be important for the transport of RNAs into exosomes and the maintenance of RNAs inside exosomes. This type of maintenance may favor the shuttling of RNAs from exosomes to recipient cells in the form of stable complexes.


Asunto(s)
Exosomas/metabolismo , Silenciador del Gen , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Línea Celular , Biología Computacional/métodos , Exosomas/genética , Células HEK293 , Humanos , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
11.
Nat Commun ; 9(1): 883, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491376

RESUMEN

Despite improvement in our understanding of long noncoding RNAs (lncRNAs) role in cancer, efforts to find clinically relevant cancer-associated lncRNAs are still lacking. Here, using nascent RNA capture sequencing, we identify 1145 temporally expressed S-phase-enriched lncRNAs. Among these, 570 lncRNAs show significant differential expression in at least one tumor type across TCGA data sets. Systematic clinical investigation of 14 Pan-Cancer data sets identified 633 independent prognostic markers. Silencing of the top differentially expressed and clinically relevant S-phase-enriched lncRNAs in several cancer models affects crucial cancer cell hallmarks. Mechanistic investigations on SCAT7 in multiple cancer types reveal that it interacts with hnRNPK/YBX1 complex and affects cancer cell hallmarks through the regulation of FGF/FGFR and its downstream PI3K/AKT and MAPK pathways. We also implement a LNA-antisense oligo-based strategy to treat cancer cell line and patient-derived tumor (PDX) xenografts. Thus, this study provides a comprehensive list of lncRNA-based oncogenic drivers with potential prognostic value.


Asunto(s)
Neoplasias/genética , ARN Largo no Codificante/genética , Fase S , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatología , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
12.
Methods Mol Biol ; 1364: 105-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26472446

RESUMEN

Exosomes are small membrane bound vesicles between 30 and 100 nm in diameter of endocytic origin that are secreted into the extracellular environment by many different cell types. Exosomes play a role in intercellular communication by transferring proteins, lipids, and RNAs to recipient cells.Exosomes from human cells could be used as vectors to provide cells with therapeutic RNAs. Here we describe how exogenous small interfering RNAs may successfully be introduced into various kinds of human exosomes using electroporation and subsequently delivered to recipient cells. Methods used to confirm the presence of siRNA inside exosomes and cells are presented, such as flow cytometry, confocal microscopy, and Northern blot.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Electroporación/métodos , Exosomas/metabolismo , ARN Interferente Pequeño/metabolismo , Capa Leucocitaria de la Sangre/citología , Northern Blotting , Western Blotting , Línea Celular Tumoral , Separación Celular , Citometría de Flujo , Humanos , Linfocitos/citología , Microscopía Confocal , Monocitos/citología
13.
World J Gastroenterol ; 21(41): 11709-39, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26556998

RESUMEN

For two decades Vogelstein's model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , ARN Neoplásico/genética , ARN no Traducido/genética , Animales , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Técnicas de Diagnóstico Molecular , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Factores de Riesgo
14.
Cancer Biol Ther ; 16(9): 1387-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25951497

RESUMEN

Uveal melanoma (UM) represents approximately 5-6% of all melanoma diagnoses and up to 50% of patients succumb to their disease. Although several methods are available, accurate diagnosis is not always easily feasible because of potential accidents (e.g., intraocular hemorrhage). Based on the assumption that the profile of circulating miRNAs is often altered in human cancers, we verified whether UM patients showed different vitreous humor (VH) or serum miRNA profiles with respect to healthy controls. By using TaqMan Low Density Arrays, we analyzed 754 miRNAs from VH, vitreal exosomes, and serum of 6 UM patients and 6 healthy donors: our data demonstrated that the UM VH profile was unique and only partially overlapping with that from serum of the same patients. Whereas, 90% of miRNAs were shared between VH and vitreal exosomes, and their alterations in UM were statistically overlapped with those of VH and vitreal exosomes, suggesting that VH alterations could result from exosomal dysregulation. We report 32 miRNAs differentially expressed in UM patients in at least 2 different types of samples analyzed. We validated these data on an independent cohort of 12 UM patients. Most alterations were common to VH and vitreal exosomes (e.g., upregulation of miR-21,-34 a,-146a). Interestingly, miR-146a was upregulated in the serum of UM patients, as well as in serum exosomes. Upregulation of miR-21 and miR-146a was also detected in formalin-fixed, paraffin-embedded UM, suggesting that VH or serum alterations in UM could be the consequence of disregulation arising from tumoral cells. Our findings suggest the possibility to detect in VH and serum of UM patients "diagnostic" miRNAs released by the affected eye: based on this, miR-146a could be considered a potential circulating marker of UM.


Asunto(s)
Biomarcadores de Tumor/sangre , Melanoma/sangre , MicroARNs/sangre , Neoplasias de la Úvea/sangre , Cuerpo Vítreo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Exosomas/genética , Exosomas/metabolismo , Femenino , Humanos , Masculino , Melanoma/diagnóstico , MicroARNs/genética , Persona de Mediana Edad , Transcriptoma , Neoplasias de la Úvea/diagnóstico
15.
Oncoscience ; 1(2): 132-157, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25594007

RESUMEN

Exchange of molecules via exosomes is a means of eukaryotic intercellular communication, especially within tumour microenvironments. However, no data are available on alterations of exosomal molecular cargo by environmental cues (eg, pharmacological treatments). To approach this issue, we compared the abundance of 754 miRNAs and 741 cancer-related proteins in exosomes secreted by Caco-2 (Cetuximab-responsive) and HCT- 116 (Cetuximab-resistant) CRC cells, before and after Cetuximab treatment, with that in their source cells. Cetuximab significantly altered the cargo of Caco-2 exosomes: it increased abundance of miRNAs and proteins activating proliferation and inflammation and reduced miRNAs and proteins related to immune suppression. These alterations did not precisely mirror those in source cells, suggesting a Cetuximab-linked effect. Analogous alterations were detected in HCT-116. Transfection of exosomes from Cetuximab-treated Caco-2 into HCT-116 significantly increased HCT-116 viability; conversely, no viability alteration was detected in Caco-2 transfected with exosomes from Cetuximab-treated HCT-116. Analysis of networks, comprising targets of differentially expressed (DE) exosomal miRNAs and DE exosomal proteins, demonstrates a significant involvement of processes related to proliferation, inflammation, immune response, apoptosis. Our data extend existing knowledge on molecular mechanisms of eukaryotic intercellular communication, especially in oncological processes. Their translation to clinical settings may add new weapons to existing therapeutic repertoires against cancer.

16.
BMC Genomics ; 14: 62, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23360399

RESUMEN

BACKGROUND: The molecular bases of mammalian pancreatic α cells higher resistance than ß to proinflammatory cytokines are very poorly defined. MicroRNAs are master regulators of cell networks, but only scanty data are available on their transcriptome in these cells and its alterations in diabetes mellitus. RESULTS: Through high-throughput real-time PCR, we analyzed the steady state microRNA transcriptome of murine pancreatic α (αTC1-6) and ß (ßTC1) cells: their comparison demonstrated significant differences. We also characterized the alterations of αTC1-6 cells microRNA transcriptome after treatment with proinflammatory cytokines. We focused our study on two microRNAs, miR-296-3p and miR-298-5p, which were: (1) specifically expressed at steady state in αTC1-6, but not in ßTC1 or INS-1 cells; (2) significantly downregulated in αTC1-6 cells after treatment with cytokines in comparison to untreated controls. These microRNAs share more targets than expected by chance and were co-expressed in αTC1-6 during a 6-48 h time course treatment with cytokines. The genes encoding them are physically clustered in the murine and human genome. By exploiting specific microRNA mimics, we demonstrated that experimental upregulation of miR-296-3p and miR-298-5p raised the propensity to apoptosis of transfected and cytokine-treated αTC1-6 cells with respect to αTC1-6 cells, treated with cytokines after transfection with scramble molecules. Both microRNAs control the expression of IGF1Rß, its downstream targets phospho-IRS-1 and phospho-ERK, and TNFα. Our computational analysis suggests that MAFB (a transcription factor exclusively expressed in pancreatic α cells within adult rodent islets of Langerhans) controls the expression of miR-296-3p and miR-298-5p. CONCLUSIONS: Altogether, high-throughput microRNA profiling, functional analysis with synthetic mimics and molecular characterization of modulated pathways strongly suggest that specific downregulation of miR-296-3p and miR-298-5p, coupled to upregulation of their targets as IGF1Rß and TNFα, is a major determinant of mammalian pancreatic α cells resistance to apoptosis induction by cytokines.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/genética , Citocinas/farmacología , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , MicroARNs/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , MicroARNs/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Transfección
17.
J Mol Med (Berl) ; 90(12): 1421-38, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22660396

RESUMEN

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has a master control role in various cancer-related biological processes as cell growth, proliferation, differentiation, migration, and apoptosis. It also regulates many transcription factors that control microRNAs (miRNAs) and their biosynthetic machinery. To investigate on the still poorly characterised global involvement of miRNAs within the pathway, we profiled the expression of 745 miRNAs in three colorectal cancer (CRC) cell lines after blocking the pathway with three different inhibitors. This allowed the identification of two classes of post-treatment differentially expressed (DE) miRNAs: (1) common DE miRNAs in all CRC lines after treatment with a specific inhibitor (class A); (2) DE miRNAs in a single CRC line after treatment with all three inhibitors (class B). By determining the molecular targets, biological roles, network position of chosen miRNAs from class A (miR-372, miR-663b, miR-1226*) and class B (miR-92a-1*, miR-135b*, miR-720), we experimentally demonstrated that they are involved in cell proliferation, migration, apoptosis, and globally affect the regulation circuits centred on MAPK/ERK signaling. Interestingly, the levels of miR-92a-1*, miR-135b*, miR-372, miR-720 are significantly higher in biopsies from CRC patients than in normal controls; they also are significantly higher in CRC patients with mutated KRAS than in those with wild-type genotypes (Wilcoxon test, p < 0.05): the latter could be a downstream effect of ERK pathway overactivation, triggered by KRAS mutations. Finally, our functional data strongly suggest the following miRNA/target pairs: miR-92a-1*/PTEN-SOCS5; miR-135b*/LATS2; miR-372/TXNIP; miR-663b/CCND2. Altogether, these results contribute to deepen current knowledge on still uncharacterized features of MAPK/ERK pathway, pinpointing new oncomiRs in CRC and allowing their translation into clinical practice and CRC therapy.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , MicroARNs/genética , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Butadienos/farmacología , Células CACO-2 , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células HCT116 , Humanos , Técnicas In Vitro , Nitrilos/farmacología , Pirazoles/farmacología , Piridazinas/farmacología , Transcriptoma/genética
18.
Mol Cancer Ther ; 9(12): 3396-409, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20881268

RESUMEN

The relationship between therapeutic response and modifications of microRNA (miRNA) transcriptome in colorectal cancer (CRC) remains unknown. We investigated this issue by profiling the expression of 667 miRNAs in 2 human CRC cell lines, one sensitive and the other resistant to cetuximab (Caco-2 and HCT-116, respectively), through TaqMan real-time PCR. Caco-2 and HCT-116 expressed different sets of miRNAs after treatment. Specifically, 21 and 22 miRNAs were differentially expressed in Caco-2 or HCT-116, respectively (t test, P < 0.01). By testing the expression of differentially expressed miRNAs in CRC patients, we found that miR-146b-3p and miR-486-5p are more abundant in K-ras-mutated samples with respect to wild-type ones (Wilcoxon test, P < 0.05). Sixty-seven percent of differentially expressed miRNAs were involved in cancer, including CRC, whereas 19 miRNA targets had been previously reported to be involved in the cetuximab pathway and CRC. We identified 25 transcription factors putatively controlling these miRNAs, 11 of which have been already reported to be involved in CRC. On the basis of these data, we suggest that the downregulation of let-7b and let-7e (targeting K-ras) and the upregulation of miR-17* (a CRC marker) could be considered as candidate molecular markers of cetuximab resistance. Global network functional analysis (based on miRNA targets) showed a significant overrepresentation of cancer-related biological processes and networks centered on critical nodes involved in epidermal growth factor receptor internalization and ubiquitin-mediated degradation. The identification of miRNAs, whose expression is linked to the efficacy of therapy, should allow the ability to predict the response of patients to treatment and possibly lead to a better understanding of the molecular mechanisms of drug response.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/genética , MicroARNs/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión , Células CACO-2 , Cetuximab , Análisis por Conglomerados , Secuencia Conservada/genética , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma Humano/genética , Humanos , MicroARNs/metabolismo , Mutación/genética , Panitumumab , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas ras/genética
19.
BMC Cancer ; 10: 377, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20642818

RESUMEN

BACKGROUND: According to the different sensitivity of their bone marrow CD34+ cells to in vitro treatment with Etoposide or Mafosfamide, Acute Myeloid Leukaemia (AML) patients in apparent complete remission (CR) after chemotherapy induction may be classified into three groups: (i) normally responsive; (ii) chemoresistant; (iii) highly chemosensitive. This inversely correlates with in vivo CD34+ mobilization and, interestingly, also with the prognosis of the disease: patients showing a good mobilizing activity are resistant to chemotherapy and subject to significantly higher rates of Minimal Residual Disease (MRD) and relapse than the others. Based on its known role in patients' response to chemotherapy, we hypothesized an involvement of the Apoptotic Machinery (AM) in these phenotypic features. METHODS: To investigate the molecular bases of the differential chemosensitivity of bone marrow hematopoietic stem cells (HSC) in CR AML patients, and the relationship between chemosensitivity, mobilizing activity and relapse rates, we analyzed their AM expression profile by performing Real Time RT-PCR of 84 AM genes in CD34+ pools from the two extreme classes of patients (i.e., chemoresistant and highly chemosensitive), and compared them with normal controls. RESULTS: The AM expression profiles of patients highlighted features that could satisfactorily explain their in vitro chemoresponsive phenotype: specifically, in chemoresistant patients we detected up regulation of antiapoptotic BIRC genes and down regulation of proapoptotic APAF1, FAS, FASL, TNFRSF25. Interestingly, our analysis of the AM network showed that the dysregulated genes in these patients are characterized by high network centrality (i.e., high values of betweenness, closeness, radiality, stress) and high involvement in drug response. CONCLUSIONS: AM genes represent critical nodes for the proper execution of cell death following pharmacological induction in patients. We propose that their dysregulation (either due to inborn or de novo genomic mutations selected by treatment) could cause a relapse in apparent CR AML patients. Based on this, AM profiling before chemotherapy and transplantation could identify patients with a predisposing genotype to MRD and relapse: accordingly, they should undergo a different, specifically tailored, therapeutic regimen and should be carefully checked during the post-treatment period.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis , Biomarcadores de Tumor/genética , Células de la Médula Ósea/metabolismo , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Leucemia Mieloide Aguda/genética , Adulto , Antígenos CD34/metabolismo , Biomarcadores de Tumor/metabolismo , Células de la Médula Ósea/patología , Movimiento Celular , Estudios de Cohortes , Femenino , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/genética , Neoplasia Residual/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Estudios Prospectivos , ARN Mensajero/genética , Inducción de Remisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Mol Med (Berl) ; 88(10): 1041-53, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20574809

RESUMEN

MicroRNAs (MIRs) perform critical regulatory functions within cell networks, both in physiology as well as in pathology. Through the positional gene candidate approach, we have identified three MIRs (MIR152, MIR200B, and MIR338) that are located in regions frequently altered in neuroblastoma (NB) and target mRNAs encoding proteins involved in cell proliferation, neuroblast differentiation, neuroblast migration, and apoptosis. Expression analysis in NB biopsies and NB cell lines showed that these MIRs are dysregulated. We have characterized a CpG island, close to the gene encoding MIR200B and hypermethylated in NB samples, that explains its negative regulation. Expression of MIR152, MIR200B, and MIR338 is specifically modulated in NB cell lines during differentiation and apoptosis. Functional genomic experiments through enforced expression of MIR200B and knockdown of MIR152 resulted in a significant decrease of the invasion activity of SH-SY5Y cells. Reconstruction of a NB network comprising MIR152, MIR200B, and MIR338 allowed us to confirm their role in the control of NB cell stemness and apoptosis: This suggests that altered regulation of these MIRs could have a role in NB pathogenesis by interfering with the molecular mechanisms, which physiologically control differentiation and death of neuroblasts. Accordingly, they could be considered as new NB biomarkers and potential targets of antagomirs or epigenetic therapies.


Asunto(s)
Apoptosis/genética , Diferenciación Celular/genética , MicroARNs/metabolismo , Neuroblastoma/genética , Línea Celular , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , MicroARNs/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...