Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107574, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009345

RESUMEN

Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as homotetramer. We investigated whether three disease-associated mutations (F629S, C632R or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wildtype (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed, when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15 %) and R638C (∼30 %). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.

2.
Proc Natl Acad Sci U S A ; 121(4): e2317344121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241440

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Ratones , Animales , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Proliferación Celular , Enfermedades Renales Poliquísticas/metabolismo , Apoptosis , Estrés Oxidativo , Quistes/metabolismo , ADN/metabolismo , Riñón/metabolismo , Canales Catiónicos TRPP/genética
3.
J Am Soc Nephrol ; 34(1): 110-121, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270750

RESUMEN

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in Pkd1 and Pkd2. They encode the polytopic integral membrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively, which are expressed on primary cilia. Formation of kidney cysts in ADPKD starts when a somatic second hit mechanism inactivates the wild-type Pkd allele. Approximately one quarter of families with ADPDK due to Pkd1 have germline nonsynonymous amino acid substitution (missense) mutations. A subset of these mutations is hypomorphic, retaining some residual PC1 function. Previous studies have shown that the highly conserved Ire1 α -XBP1 pathway of the unfolded protein response can modulate levels of functional PC1 in the presence of mutations in genes required for post-translational maturation of integral membrane proteins. We examine how activity of the endoplasmic reticulum chaperone-inducing transcription factor XBP1 affects ADPKD in a murine model with missense Pkd1 . METHODS: We engineered a Pkd1 REJ domain missense murine model, Pkd1 R2216W , on the basis of the orthologous human hypomorphic allele Pkd1 R2220W , and examined the effects of transgenic activation of XBP1 on ADPKD progression. RESULTS: Expression of active XBP1 in cultured cells bearing PC1 R2216W mutations increased levels and ciliary trafficking of PC1 R2216W . Mice homozygous for Pkd1 R2216W or heterozygous for Pkd1 R2216Win trans with a conditional Pkd1 fl allele exhibit severe ADPKD following inactivation in neonates or adults. Transgenic expression of spliced XBP1 in tubule segments destined to form cysts reduced cell proliferation and improved Pkd progression, according to structural and functional parameters. CONCLUSIONS: Modulating ER chaperone function through XBP1 activity improved Pkd in a murine model of PC1, suggesting therapeutic targeting of hypomorphic mutations.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Adulto , Ratones , Humanos , Animales , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Modelos Animales de Enfermedad , Enfermedades Renales Poliquísticas/metabolismo , Mutación , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
4.
Pflugers Arch ; 474(2): 217-229, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34870751

RESUMEN

Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2-/-) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2-/- mice. However, Habp2-/- mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2-/- mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Factor VII/metabolismo , Riñón/metabolismo , Síndrome Nefrótico/metabolismo , Péptido Hidrolasas/metabolismo , Sodio/metabolismo , Animales , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Humanos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Riñón/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteolisis/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Xenopus laevis/metabolismo
5.
J Cell Sci ; 134(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34345895

RESUMEN

Mutations in the PKD2 gene cause autosomal-dominant polycystic kidney disease but the physiological role of polycystin-2, the protein product of PKD2, remains elusive. Polycystin-2 belongs to the transient receptor potential (TRP) family of non-selective cation channels. To test the hypothesis that altered ion channel properties of polycystin-2 compromise its putative role in a control circuit controlling lumen formation of renal tubular structures, we generated a mouse model in which we exchanged the pore loop of polycystin-2 with that of the closely related cation channel polycystin-2L1 (encoded by PKD2L1), thereby creating the protein polycystin-2poreL1. Functional characterization of this mutant channel in Xenopus laevis oocytes demonstrated that its electrophysiological properties differed from those of polycystin-2 and instead resembled the properties of polycystin-2L1, in particular regarding its permeability for Ca2+ ions. Homology modeling of the ion translocation pathway of polycystin-2poreL1 argues for a wider pore in polycystin-2poreL1 than in polycystin-2. In Pkd2poreL1 knock-in mice in which the endogenous polycystin-2 protein was replaced by polycystin-2poreL1 the diameter of collecting ducts was increased and collecting duct cysts developed in a strain-dependent fashion.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Animales , Canales de Calcio , Túbulos Renales/metabolismo , Ratones , Riñón Poliquístico Autosómico Dominante/genética , Receptores de Superficie Celular , Transducción de Señal , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
6.
Healthcare (Basel) ; 9(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356240

RESUMEN

BACKGROUND: Since diagnosis-related groups (SwissDRG) were established in Switzerland in 2012, small and medium-size hospitals have encountered increasing financial troubles. Even though hernia repair operations are frequent, most hospitals fail to cover their costs with these procedures. Previous studies have focused mainly on analyzing costs and the contributing factors but less on variables that can be positively influenced. Therefore, this study aims to identify the relevant and influenceable factors for revenue growth in hernia repair surgery. METHODS: Data from all patients who underwent the SwissDRG G09 surgery for a hernia in 2019 were analyzed. The contribution margin (CM4), as well as any over- or under-coverage, was correlated to case-specific costs. RESULTS: A total of 168 patients received hernia repair surgery with the SwissDRG code G09. The average revenue/loss generated by one procedure was CHF -623.84. Procedures covered by the General Health Insurance (OKP) generated a loss of CHF -830.70 on average, whereas procedures covered by private insurance companies (VVG) generated revenue of CHF +1100 on average. Significant factors impacting the profitability of hernia repair operations were teaching during surgery (p < 0.005), the surgical operating time (p < 0.001), the total anesthesia time (p < 0.001), the number of surgeons present (p = 0.022), the insurance state of patients (p < 0.001), and the type of surgery (p < 0.01 for Lichtenstein's procedure). CONCLUSIONS: This study reveals that hernia repair surgery performed under cost coverage by OKP is generally unprofitable. Our results further imply that the most important and influenceable factors for revenue enhancement are the quality and process optimization of the surgical department. To compensate for this deficit, hospitals should aim to increase the percentage of patients with private health insurance coverage in their procedures. Since outpatient surgery does not provide a valid alternative due to the low reimbursement by insurance companies, the cost efficiency of inpatient hernia repair needs to be increased by process optimization of the surgical department; for instance, by providing specialized hernia teams performing with shorter operation times and high quality.

7.
Acta Physiol (Oxf) ; 227(4): e13286, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31006168

RESUMEN

AIM: In nephrotic syndrome, aberrantly filtered plasminogen (plg) is converted to active plasmin by tubular urokinase-type plasminogen activator (uPA) and thought to lead to sodium retention by proteolytic activation of the epithelial sodium channel (ENaC). This concept predicts that uPA is an important factor for sodium retention and that inhibition of uPA might be protective in nephrotic syndrome. METHODS: Activation of amiloride-sensitive currents by uPA and plg were studied in Xenopus laevis oocytes expressing murine ENaC. In doxorubicin-induced nephrotic mice, uPA was inhibited pharmacologically by amiloride and genetically by the use of uPA-deficient mice (uPA-/- ). RESULTS: Experiments in Xenopus laevis oocytes expressing murine ENaC confirmed proteolytic ENaC activation by a combination of plg and uPA which stimulated amiloride-sensitive currents with concomitant cleavage of the ENaC γ-subunit at the cell surface. Treatment of nephrotic wild-type mice with amiloride inhibited urinary uPA activity, prevented urinary plasmin formation and sodium retention. In nephrotic mice lacking uPA (uPA-/- ), urinary plasmin formation from plg was suppressed and urinary uPA activity absent. However, in nephrotic uPA-/- mice, sodium retention was not reduced compared to nephrotic uPA+/+ mice. Amiloride prevented sodium retention in nephrotic uPA-/- mice which confirmed the critical role of ENaC in sodium retention. CONCLUSION: uPA is responsible for the conversion of aberrantly filtered plasminogen to plasmin in the tubular lumen in vivo. However, uPA-dependent plasmin generation is not essential for ENaC-mediated sodium retention in experimental nephrotic syndrome.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Amilorida/administración & dosificación , Amilorida/farmacología , Animales , Relación Dosis-Respuesta a Droga , Bloqueadores del Canal de Sodio Epitelial/administración & dosificación , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/genética , Regulación de la Expresión Génica/efectos de los fármacos , Activación del Canal Iónico , Ratones , Ratones Noqueados , Síndrome Nefrótico , Oocitos , Activador de Plasminógeno de Tipo Uroquinasa/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...