Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 214, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090759

RESUMEN

BACKGROUND: Melanoma progression is based on a close interaction between cancer cells and immune cells in the tumor microenvironment (TME). Thus, a better understanding of the mechanisms controlling TME dynamics and composition will help improve the management of this dismal disease. Work from our and other groups has reported the requirement of an active Hedgehog-GLI (HH-GLI) signaling for melanoma growth and stemness. However, the role of the downstream GLI1 transcription factor in melanoma TME remains largely unexplored. METHODS: The immune-modulatory activity of GLI1 was evaluated in a syngeneic B16F10 melanoma mouse model assessing immune populations by flow cytometry. Murine polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were differentiated from bone marrow cells and their immunosuppressive ability was assessed by inhibition of T cells. Conditioned media (CM) from GLI1-overexpressing mouse melanoma cells was used to culture PMN-MDSCs, and the effects of CM were evaluated by Transwell invasion assay and T cell inhibition. Cytokine array analysis, qPCR and chromatin immunoprecipitation were performed to explore the regulation of CX3CL1 expression by GLI1. Human monocyte-derived dendritic cells (moDCs) were cultured in CM from GLI1-silenced patient-derived melanoma cells to assess their activation and recruitment. Blocking antibodies anti-CX3CL1, anti-CCL7 and anti-CXCL8 were used for in vitro functional assays. RESULTS: Melanoma cell-intrinsic activation of GLI1 promotes changes in the infiltration of immune cells, leading to accumulation of immunosuppressive PMN-MDSCs and regulatory T cells, and to decreased infiltration of dendric cells (DCs), CD8 + and CD4 + T cells in the TME. In addition, we show that ectopic expression of GLI1 in melanoma cells enables PMN-MDSC expansion and recruitment, and increases their ability to inhibit T cells. The chemokine CX3CL1, a direct transcriptional target of GLI1, contributes to PMN-MDSC expansion and recruitment. Finally, silencing of GLI1 in patient-derived melanoma cells promotes the activation of human monocyte-derived dendritic cells (moDCs), increasing cytoskeleton remodeling and invasion ability. This phenotype is partially prevented by blocking the chemokine CCL7, but not CXCL8. CONCLUSION: Our findings highlight the relevance of tumor-derived GLI1 in promoting an immune-suppressive TME, which allows melanoma cells to evade the immune system, and pave the way for the design of new combination treatments targeting GLI1.


Asunto(s)
Melanoma , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Proteína con Dedos de Zinc GLI1 , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Ratones , Humanos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Melanoma/patología , Melanoma/metabolismo , Melanoma/inmunología , Melanoma/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones Endogámicos C57BL
2.
Mol Oncol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965815

RESUMEN

The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression. Likewise, the effects of ERK5 in supporting cancer cell proliferation have been linked to its nuclear localization. Despite many processes regulating ERK5 nuclear translocation having been determined, the nuclear transporters involved have not yet been identified. Here, we investigated the role of importin subunit alpha (α importin) and importin subunit beta-1 (importin ß1) in ERK5 nuclear shuttling to identify additional targets for cancer treatment. Either importin ß1 knockdown or the α/ß1 importin inhibitor ivermectin reduced the nuclear amount of overexpressed and endogenous ERK5 in HEK293T and A375 melanoma cells, respectively. These results were confirmed in single-molecule microscopy in HeLa cells. Moreover, immunofluorescence analysis showed that ivermectin impairs epidermal growth factor (EGF)-induced ERK5 nuclear shuttling in HeLa cells. Both co-immunoprecipitation experiments and proximity ligation assay provided evidence that ERK5 and importin ß1 interact and that this interaction is further induced by EGF administration and prevented by ivermectin treatment. The combination of ivermectin and the ERK5 inhibitor AX15836 synergistically reduced cell viability and colony formation ability in A375 and HeLa cells and was more effective than single treatments in preventing the growth of A375 and HeLa spheroids. The increased reduction of cell viability upon the same combination was also observed in patient-derived metastatic melanoma cells. The combination of ivermectin and ERK5 inhibitors other than AX15836 provided similar effects on cell viability. The identification of importin ß1 as the nuclear transporter of ERK5 may be exploited for additional ERK5-inhibiting strategies for cancer therapy.

3.
Am J Pathol ; 194(8): 1581-1591, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38705382

RESUMEN

Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. While available treatments have improved survival, long-term benefits are still unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-transforming growth factor ß-binding protein 1 (LTBP1) mRNA was found to be up-regulated in A375 and SK-Mel-5 BRAF V600E melanoma cells after ERK5 inhibition. In keeping with a key role of LTBP1 in regulating transforming growth factor ß (TGF-ß), TGF-ß1 protein levels were increased in lysates and conditioned media of ERK5-knockdown (KD) cells, and were reduced upon LTBP1 KD. Both LTBP1 and TGF-ß1 proteins were increased in melanoma xenografts in mice treated with the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD melanoma cells reduced cell proliferation and invasiveness, and TGF-ß1-neutralizing antibodies impaired these effects. In silico data sets revealed that higher expression levels of both LTBP1 and TGF-ß1 mRNA were associated with better overall survival of melanoma patients. Increased LTBP1 or TGF-ß1 expression played a beneficial role in patients treated with anti-PD1 immunotherapy, making a possible immunosuppressive role of LTBP1/TGF-ß1 unlikely upon ERK5 inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing evidence of an ERK5-dependent tumor-suppressive role of TGF-ß in melanoma.


Asunto(s)
Proliferación Celular , Proteínas de Unión a TGF-beta Latente , Melanoma , Proteína Quinasa 7 Activada por Mitógenos , Factor de Crecimiento Transformador beta1 , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Melanoma/tratamiento farmacológico , Humanos , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Unión a TGF-beta Latente/genética , Animales , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/genética , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...