Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000717

RESUMEN

Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding. All ZnO NPs are homogeneously distributed in the PHBHHx matrix at 1, 3 and 5 wt.%, but finer dispersion is achieved with modified ZnO. No chemical interactions between ZnO and PHBHHx are observed due to a lack of hydroxyl groups on ZnO. The fabricated nanocomposite films retain the flexible properties of PHBHHx with minimal impact of ZnO NPs on crystallization kinetics and the degree of crystallinity (53 to 56%). The opacity gradually increases with ZnO loading, while remaining translucent up to 5 wt.% ZnO and providing an effective UV barrier. Improved oxygen barrier and antibacterial effects against S. aureus are dependent on the intrinsic characteristics of ZnO rather than its morphology. We conclude that PHBHHx retains its favorable processing properties while producing nanocomposite films that are suitable as flexible active packaging materials.

2.
NPJ Biofilms Microbiomes ; 10(1): 23, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503782

RESUMEN

Bacteria typically live in dense communities where they are surrounded by other species and compete for a limited amount of resources. These competitive interactions can induce defensive responses that also protect against antimicrobials, potentially complicating the antimicrobial treatment of pathogens residing in polymicrobial consortia. Therefore, we evaluate the potential of alternative antivirulence strategies that quench this response to competition. We test three competition quenching approaches: (i) interference with the attack mechanism of surrounding competitors, (ii) inhibition of the stress response systems that detect competition, and (iii) reduction of the overall level of competition in the community by lowering the population density. We show that either strategy can prevent the induction of antimicrobial tolerance of Salmonella Typhimurium in response to competitors. Competition quenching strategies can thus reduce tolerance of pathogens residing in polymicrobial communities and could contribute to the improved eradication of these pathogens via traditional methods.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Biopelículas , Bacterias
3.
ISME Commun ; 3(1): 118, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968339

RESUMEN

Identifying interspecies interactions in mixed-species biofilms is a key challenge in microbial ecology and is of paramount importance given that interactions govern community functionality and stability. We previously reported a bacterial four-species biofilm model comprising Stenotrophomonas rhizophila, Bacillus licheniformis, Microbacterium lacticum, and Calidifontibacter indicus that were isolated from the surface of a dairy pasteuriser after cleaning and disinfection. These bacteria produced 3.13-fold more biofilm mass compared to the sum of biofilm masses in monoculture. The present study confirms that the observed community synergy results from dynamic social interactions, encompassing commensalism, exploitation, and amensalism. M. lacticum appears to be the keystone species as it increased the growth of all other species that led to the synergy in biofilm mass. Interactions among the other three species (in the absence of M. lacticum) also contributed towards the synergy in biofilm mass. Biofilm inducing effects of bacterial cell-free-supernatants were observed for some combinations, revealing the nature of the observed synergy, and addition of additional species to dual-species combinations confirmed the presence of higher-order interactions within the biofilm community. Our findings provide understanding of bacterial interactions in biofilms which can be used as an interaction-mediated approach for cultivating, engineering, and designing synthetic bacterial communities.

4.
Appl Environ Microbiol ; 89(10): e0115523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819078

RESUMEN

While the evolution of antimicrobial resistance is well studied in free-living bacteria, information on resistance development in dense and diverse biofilm communities is largely lacking. Therefore, we explored how the social interactions in a duo-species biofilm composed of the brewery isolates Pseudomonas rhodesiae and Raoultella terrigena influence the adaptation to the broad-spectrum antimicrobial sulfathiazole. Previously, we showed that the competition between these brewery isolates enhances the antimicrobial tolerance of P. rhodesiae. Here, we found that this enhanced tolerance in duo-species biofilms is associated with a strongly increased antimicrobial resistance development in P. rhodesiae. Whereas P. rhodesiae was not able to evolve resistance against sulfathiazole in monospecies conditions, it rapidly evolved resistance in the majority of the duo-species communities. Although the initial presence of R. terrigena was thus required for P. rhodesiae to acquire resistance, the resistance mechanisms did not depend on the presence of R. terrigena. Whole genome sequencing of resistant P. rhodesiae clones showed no clear mutational hot spots. This indicates that the acquired resistance phenotype depends on complex interactions between low-frequency mutations in the genetic background of the strains. We hypothesize that the increased tolerance in duo-species conditions promotes resistance by enhancing the selection of partially resistant mutants and opening up novel evolutionary trajectories that enable such genetic interactions. This hypothesis is reinforced by experimentally excluding potential effects of increased initial population size, enhanced mutation rate, and horizontal gene transfer. Altogether, our observations suggest that the community mode of life and the social interactions therein strongly affect the accessible evolutionary pathways toward antimicrobial resistance.IMPORTANCEAntimicrobial resistance is one of the most studied bacterial properties due to its enormous clinical and industrial relevance; however, most research focuses on resistance development of a single species in isolation. In the present study, we showed that resistance evolution of brewery isolates can differ greatly between single- and mixed-species conditions. Specifically, we observed that the development of antimicrobial resistance in certain species can be significantly enhanced in co-culture as compared to the single-species conditions. Overall, the current study emphasizes the need of considering the within bacterial interactions in microbial communities when evaluating antimicrobial treatments and resistance evolution.


Asunto(s)
Antiinfecciosos , Antiinfecciosos/farmacología , Biopelículas , Bacterias/genética , Fenotipo , Sulfatiazoles/farmacología , Antibacterianos/farmacología
5.
iScience ; 26(6): 106861, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37260744

RESUMEN

Biofilms contain extracellular polymeric substances (EPS) that provide structural support and restrict penetration of antimicrobial treatment. To overcome limited penetration, functionalized nanoparticles (NPs) have been suggested as carriers for antimicrobial delivery. Using microscopy, we evaluate the diffusion of nanoparticles in function of the structure of Salmonella biofilms. We observe anomalous diffusion and heterogeneous mobility of NPs resulting in distinct NPs distribution that depended on biofilm structure. Through Brownian dynamics modeling with spatially varying viscosity around bacteria, we demonstrated that spatial gradients in diffusivity generate viscous sinks that trap NPs near bacteria. This model replicates the characteristic diffusion signature and vertical distribution of NPs in the biofilm. From a treatment perspective, our work indicates that both biofilm structure and the level of EPS can impact NP drug delivery, where low levels of EPS might benefit delivery by immobilizing NPs closer to bacteria and higher levels hamper delivery due to shielding effects.

7.
Mol Biol Evol ; 39(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36480297

RESUMEN

Antibiotic cycling has been proposed as a promising approach to slow down resistance evolution against currently employed antibiotics. It remains unclear, however, to which extent the decreased resistance evolution is the result of collateral sensitivity, an evolutionary trade-off where resistance to one antibiotic enhances the sensitivity to the second, or due to additional effects of the evolved genetic background, in which mutations accumulated during treatment with a first antibiotic alter the emergence and spread of resistance against a second antibiotic via other mechanisms. Also, the influence of antibiotic exposure patterns on the outcome of drug cycling is unknown. Here, we systematically assessed the effects of the evolved genetic background by focusing on the first switch between two antibiotics against Salmonella Typhimurium, with cefotaxime fixed as the first and a broad variety of other drugs as the second antibiotic. By normalizing the antibiotic concentrations to eliminate the effects of collateral sensitivity, we demonstrated a clear contribution of the evolved genetic background beyond collateral sensitivity, which either enhanced or reduced the adaptive potential depending on the specific drug combination. We further demonstrated that the gradient strength with which cefotaxime was applied affected both cefotaxime resistance evolution and adaptation to second antibiotics, an effect that was associated with higher levels of clonal interference and reduced cost of resistance in populations evolved under weaker cefotaxime gradients. Overall, our work highlights that drug cycling can affect resistance evolution independently of collateral sensitivity, in a manner that is contingent on the antibiotic exposure pattern.


Asunto(s)
Antibacterianos , Sensibilidad Colateral al uso de Fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Cefotaxima/farmacología , Farmacorresistencia Bacteriana/genética
8.
Microbiol Spectr ; 10(6): e0183622, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36342318

RESUMEN

Salmonella enterica is one of the most common foodborne pathogens and, due to the spread of antibiotic resistance, new antimicrobial strategies are urgently needed to control it. In this study, we explored the probiotic potential of Bacillus subtilis PS-216 and elucidated the mechanisms that underlie the interactions between this soil isolate and the model pathogenic strain S. Typhimurium SL1344. The results reveal that B. subtilis PS-216 inhibits the growth and biofilm formation of S. Typhimurium through the production of the pks cluster-dependent polyketide bacillaene. The presence of S. Typhimurium enhanced the activity of the PpksC promoter that controls bacillaene production, suggesting that B. subtilis senses and responds to Salmonella. The level of Salmonella inhibition, overall PpksC activity, and PpksC induction by Salmonella were all higher in nutrient-rich conditions than in nutrient-depleted conditions. Although eliminating the extracellular polysaccharide production of B. subtilis via deletion of the epsA-O operon had no significant effect on inhibitory activity against Salmonella in nutrient-rich conditions, this deletion mutant showed an enhanced antagonism against Salmonella in nutrient-depleted conditions, revealing an intricate relationship between exopolysaccharide production, nutrient availability, and bacillaene synthesis. Overall, this work provides evidence on the regulatory role of nutrient availability, sensing of the competitor, and EpsA-O polysaccharide in the social outcome of bacillaene-dependent competition between B. subtilis and S. Typhimurium. IMPORTANCE Probiotic bacteria represent an alternative for controlling foodborne disease caused by Salmonella enterica, which constitutes a serious concern during food production due to its antibiotic resistance and resilience to environmental stress. Bacillus subtilis is gaining popularity as a probiotic, but its behavior in biofilms with pathogens such as Salmonella remains to be elucidated. Here, we show that the antagonism of B. subtilis is mediated by the polyketide bacillaene and that the production of bacillaene is a highly dynamic trait which depends on environmental factors such as nutrient availability and the presence of competitors. Moreover, the production of extracellular polysaccharides by B. subtilis further alters the influence of these factors. Hence, this work highlights the inhibitory effect of B. subtilis, which is condition-dependent, and the importance of evaluating probiotic strains under conditions relevant to the intended use.


Asunto(s)
Policétidos , Salmonella enterica , Salmonella typhimurium , Bacillus subtilis , Biopelículas , Nutrientes , Policétidos/farmacología
9.
Front Microbiol ; 13: 999839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406439

RESUMEN

Dental caries and periodontal diseases remain a challenge for oral health, especially given the lack of effective and safe treatment options that are currently available. Against the backdrop of an ongoing antimicrobial resistance crisis, a renewed interest in traditional medicinal plants as a potential source of new bioactive compounds has surfaced. In this context, we systematically screened the antimicrobial and anti-biofilm activities of both ethanolic and aqueous extracts of nine Algerian medicinal plants (Artemisia herba alba, Centaurium erythraea, Juglans regia, Laurus nobilis, Matricaria recutita, Mentha pulegium, Mentha piperita, Origanum vulgare and Taraxacum officinale). To evaluate the activity spectrum of the extracts, the screening was carried out against an extensive collection of Streptococcus, Enterococcus and Lacticaseibacillus isolates recovered from dental plaques of Algerian patients. Broad-spectrum antimicrobial and anti-biofilm properties were observed, especially among ethanolic extracts, which marks them as a promising source for bioactive compounds to control oral biofilms. The ethanolic extract of O. vulgare, which showed the most promising effects in the initial screening, was further characterized. We first verified the biocompatibility of this extract using human oral keratinocytes and selected a range of non-cytotoxic concentrations (0.195-0.781 mg/ml) to further validate its anti-biofilm and anti-virulence potential. At these concentrations, the extract not only prevented biofilm formation (10.04 ± 0.75-87.91 ± 9.08% of reduction) of most dental plaque isolates on a polystyrene surface, but also significantly reduced their adherence to hydroxyapatite (34.58 ± 9.09-62.77 ± 0.95%). Moreover, the extract showed curative potential against mature biofilms grown under conditions mimicking the oral niche. In addition to its anti-biofilm properties, we observed an inhibition of glucosyltransferase activity, a reduction in acidogenesis and a downregulation in the expression of multiple virulence-associated genes for extract-treated samples. Since anti-virulence properties are more robust to the development of resistance, they provide an attractive complementation to the antimicrobial activities of the extract. Thymol was identified as an important active compound of the extract using GC-MS analysis, but synergy with other compounds was also detected, suggesting a potential advantage of using the whole extract over purified thymol. Further research into the bioactive compounds of the O. vulgare ethanolic extract could yield novel products to fight dental caries.

10.
ISME J ; 16(10): 2305-2312, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35778439

RESUMEN

In Saccharomyces cerevisiae, the FLO1 gene encodes flocculins that lead to formation of multicellular flocs, that offer protection to the constituent cells. Flo1p was found to preferentially bind to fellow cooperators compared to defectors lacking FLO1 expression, enriching cooperators within the flocs. Given this dual function in cooperation and kin recognition, FLO1 has been termed a "green beard gene". Because of the heterophilic nature of the Flo1p bond however, we hypothesize that kin recognition is permissive and depends on the relative stability of the FLO1+/flo1- versus FLO1+/FLO1+ detachment force F. We combine single-cell measurements of adhesion, individual cell-based simulations of cluster formation, and in vitro flocculation to study the impact of relative bond stability on the evolutionary stability of cooperation. We identify a trade-off between both aspects of the green beard mechanism, with reduced relative bond stability leading to increased kin recognition at the expense of cooperative benefits. We show that the fitness of FLO1 cooperators decreases as their frequency in the population increases, arising from the observed permissive character (F+- = 0.5 F++) of the Flo1p bond. Considering the costs associated with FLO1 expression, this asymmetric selection often results in a stable coexistence between cooperators and defectors.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Evolución Biológica , Floculación , Lectinas de Unión a Manosa/química , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
FEMS Microbiol Rev ; 46(5)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35675280

RESUMEN

Interference with public good cooperation provides a promising novel antimicrobial strategy since social evolution theory predicts that resistant mutants will be counter-selected if they share the public benefits of their resistance with sensitive cells in the population. Although this hypothesis is supported by a limited number of pioneering studies, an extensive body of more fundamental work on social evolution describes a multitude of mechanisms and conditions that can stabilize public behaviour, thus potentially allowing resistant mutants to thrive. In this paper we theorize on how these different mechanisms can influence the evolution of resistance against public good inhibitors. Based hereon, we propose an innovative 5-step screening strategy to identify novel evolution-proof public good inhibitors, which involves a systematic evaluation of the exploitability of public goods under the most relevant experimental conditions, as well as a careful assessment of the most optimal way to interfere with their action. Overall, this opinion paper is aimed to contribute to long-term solutions to fight bacterial infections.


Asunto(s)
Evolución Biológica , Evolución Social , Investigación
12.
Annu Rev Microbiol ; 76: 179-192, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609949

RESUMEN

Bacteria are social organisms that commonly live in dense communities surrounded by a multitude of other species. The competitive and cooperative interactions between these species not only shape the bacterial communities but also influence their susceptibility to antimicrobials. While several studies have shown that mixed-species communities are more tolerant toward antimicrobials than their monospecies counterparts, only limited empirical data are currently available on how interspecies interactions influence resistance development. We here propose a theoretic framework outlining the potential impact of interspecies social behavior on different aspects of resistance development. We identify factors by which interspecies interactions might influence resistance evolution and distinguish between their effect on (a) the emergence of a resistant mutant and (b) the spread of this resistance throughout the population. Our analysis indicates that considering the social life of bacteria is imperative to the rational design of more effective antibiotic treatment strategies with a minimal hazard for resistance development.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Bacterias/genética , Interacciones Microbianas
13.
Eur J Vasc Endovasc Surg ; 63(1): 119-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34674936

RESUMEN

OBJECTIVE: Vascular graft infection (VGI) is a feared complication. Prevention is of the utmost importance and vascular graft coatings (VGCs) could offer a potential to do this, with in vitro research a first crucial step. The aim of this study was to summarise key features of in vitro models investigating coating strategies to prevent VGI in order to provide guidance for the setup of future translational research. DATA SOURCES: A comprehensive search was performed in MEDLINE, Embase, and Web of Science. METHODS: A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. For each database, a specific search strategy was developed. Quality was assessed with the Toxicological data Reliability Assessment Tool (ToxRTool). In vitro models using a VGC and inoculation of the graft with a pathogen were included. The type of graft, coating, and pathogen were summarised. The outcome assessment in each study was evaluated. RESULTS: In total, 4 667 studies were identified, of which 45 papers met the inclusion criteria. The majority used polyester grafts (68.2%). Thirty-one studies (68.9%) included antibiotics, and nine studies (20%) used a commercial silver graft in their protocol. New antibacterial strategies (e.g., proteolytic enzymes) were investigated. A variety of testing methods was found and focused mainly on bacterial adherence, coating adherence and dilution, biofilm formation, and cytotoxicity. Ninety-three per cent of the studies (n = 41) were considered unreliable. CONCLUSION: Polyester is the preferred type of graft to coat on. The majority of coating studies are based on antibiotics; however, new coating strategies (e.g., antibiofilm coating) are coming. Many in vitro setups are available. In vitro studies have great potential, they can limit the use, but cannot replace in vivo studies completely. This paper can be used as a guidance document for future in vitro research.


Asunto(s)
Prótesis Vascular , Diseño de Prótesis , Infecciones Relacionadas con Prótesis/prevención & control , Antibacterianos/administración & dosificación , Humanos , Técnicas In Vitro , Poliésteres , Infecciones Relacionadas con Prótesis/microbiología , Plata/administración & dosificación
14.
Front Microbiol ; 13: 987164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687646

RESUMEN

Background: Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity. Materials and methods: The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was determined in the Calgary biofilm device. Results: Most of the unmodified tannins exhibited specific antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the antibiofilm activity level and spectrum of the tannins. A positive charge introduced by derivatization with higher amounts of ammonium groups shifted the anti-biofilm spectrum toward Gram-negative bacteria, and derivatization with lower amounts of ammonium groups and acidifying derivatization shifted the spectrum toward Gram-positive bacteria. Furthermore, the quantity of phenolic OH-groups per molecule was found to have a weak impact on the anti-biofilm activity of the tannins. Conclusion: We were able to modulate the antibiofilm activity of several tannins by specific chemical modifications, providing a first approach for fine tuning of their activity and antibacterial spectrum.

15.
Front Microbiol ; 12: 658521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967997

RESUMEN

Orthopedic device-related infections remain a serious challenge to treat. Central to these infections are bacterial biofilms that form on the orthopedic implant itself. These biofilms shield the bacteria from the host immune system and most common antibiotic drugs, which renders them essentially antibiotic-tolerant. There is an urgent clinical need for novel strategies to prevent these serious infections that do not involve conventional antibiotics. Recently, a novel antibiofilm coating for titanium surfaces was developed based on 5-(4-bromophenyl)-N-cyclopentyl-1-octyl-1H-imidazol-2-amine as an active biofilm inhibitor. In the current study we present an optimized coating protocol that allowed for a 5-fold higher load of this active compound, whilst shortening the manufacturing process. When applied to titanium disks, the newly optimized coating was resilient to the most common sterilization procedures and it induced a 1 log reduction in biofilm cells of a clinical Staphylococcus aureus isolate (JAR060131) in vitro, without affecting the planktonic phase. Moreover, the antibiofilm effect of the coating in combination with the antibiotic cefuroxime was higher than cefuroxime treatment alone. Furthermore, the coating was successfully applied to a human-scale fracture fixation device resulting in a loading that was comparable to the titanium disk model. Finally, an in vivo biocompatibility and healing study in a rabbit osteotomy model indicated that these coated implants did not negatively affect fracture healing or osteointegration. These findings put our technology one step closer to clinical trials, confirming its potential in fighting orthopedic infections without compromising healing.

16.
J Vasc Surg ; 74(4): 1386-1393.e1, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34019984

RESUMEN

OBJECTIVE: Vascular graft infection (VGI) is a serious complication with high mortality and morbidity rates. Several measures could be taken to decrease this risk, including the use of silver-containing vascular grafts. However, to date, no clinical advantages have been reported. This study reviews the outcome of preclinical studies focusing on the role of commercially available silver-coated grafts in the prevention of VGI. METHODS: A systematic review was performed with a focus on the preclinical role of commercially available silver-coated vascular grafts in the prevention and treatment of VGI. A comprehensive search was conducted in Medline, Embase, and Web of Science. RESULTS: Nine in vitro and five in vivo studies were included. Two commercial grafts were used (INTERGARD SILVER and Silver Graft). In vitro studies used both gram-positive and gram-negative strains. A positive antimicrobial effect was observed in seven of nine studies (77.8%). A delayed antifungal effect against Candida species was observed in vitro, but disappeared when adding serum proteins. In vivo studies witnessed a microbicidal effect in two out of five studies (40%), but only tested a single causative pathogen (ie, Staphylococcus aureus). CONCLUSIONS: Both in vitro and in vivo studies demonstrated conflicting and mixed results concerning the antimicrobial efficacy of commercially available silver-containing grafts in the prevention of VGI. In general, the study setup was heterogeneous in the different articles. Given the lack of convincing preclinical evidence and their poor performance in clinical studies, more data are needed at this time to guide the appropriate use of silver grafts.


Asunto(s)
Antibacterianos/administración & dosificación , Antifúngicos/administración & dosificación , Implantación de Prótesis Vascular/instrumentación , Prótesis Vascular , Materiales Biocompatibles Revestidos , Procedimientos Endovasculares/instrumentación , Infecciones Relacionadas con Prótesis/prevención & control , Compuestos de Plata/administración & dosificación , Animales , Antibacterianos/toxicidad , Antifúngicos/toxicidad , Prótesis Vascular/efectos adversos , Implantación de Prótesis Vascular/efectos adversos , Procedimientos Endovasculares/efectos adversos , Análisis de Falla de Equipo , Humanos , Modelos Animales , Diseño de Prótesis , Infecciones Relacionadas con Prótesis/diagnóstico , Infecciones Relacionadas con Prótesis/microbiología , Compuestos de Plata/toxicidad
17.
Eur J Vasc Endovasc Surg ; 62(1): 99-118, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33840577

RESUMEN

OBJECTIVE: Vascular graft infection (VGI) remains an important complication with a high mortality and morbidity rate. Currently, studies focusing on the role of vascular graft coatings in the prevention of VGI are scarce. Therefore, the aims of this study were to survey and summarise key features of pre-clinical in vivo models that have been used to investigate coating strategies to prevent VGI and to set up an ideal model that can be used in future preclinical research. DATA SOURCES: A systematic review was conducted in accordance with the Preferred reporting items for Systematic Reviews and Meta-Analysis guidelines. A comprehensive search was performed in MEDLINE (PubMed), Embase, and Web of Science. REVIEW METHODS: For each database, a specific search strategy was developed. Quality was assessed with the Toxicological data Reliability Assessment Tool (ToxRTool). The type of animal model, graft, coating, and pathogen were summarised. The outcome assessment in each study was evaluated. RESULTS: In total, 4 667 studies were identified, of which 94 papers focusing on in vivo testing were included. Staphylococcus aureus was the organism most used (n = 65; 67.7%). Most of the graft types were polyester grafts. Rifampicin was the most frequently used antibiotic coating (n = 43, 48.3%). In the outcome assessment, most studies mentioned colony forming unit count (n = 88; 91.7%) and clinical outcome (n = 72; 75%). According to the ToxRTool, 21 (22.3%, n = 21/94) studies were considered to be not reliable. CONCLUSION: Currently published in vivo models are very miscellaneous. More attention should be paid to the methodology of these pre-clinical reports when transferring novel graft coatings into clinical practice. Variables used in pre-clinical reports (bacterial strain, duration of activity coating) do not correspond well to current clinical studies. Based on the results of this review, a proposal for a complete and comprehensive set up for pre-clinical invivo testing of anti-infectious properties of vascular graft coatings was defined.


Asunto(s)
Implantación de Prótesis Vascular/efectos adversos , Prótesis Vascular/efectos adversos , Modelos Animales de Enfermedad , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Estafilocócicas/prevención & control , Animales , Prótesis Vascular/microbiología , Implantación de Prótesis Vascular/instrumentación , Recuento de Colonia Microbiana , Estudios de Factibilidad , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Relacionadas con Prótesis/microbiología , Reproducibilidad de los Resultados , Rifampin/administración & dosificación , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación
18.
Biofouling ; 37(1): 61-77, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33573402

RESUMEN

Cleaning and disinfection protocols are not always able to remove biofilm microbes present in breweries, indicating that novel anti-biofilm strategies are needed. The preventive activities of three in-house synthesized members of the 2-aminoimidazole class of anti-biofilm molecules were studied against 17 natural brewery biofilms and benchmarked against 18 known inhibitors. Two 2-aminoimidazoles belonged to the top six inhibitors, which were retested against 12 defined brewery biofilm models. For the three best inhibitors, tannic acid (n° 1), 2-aminoimidazole imi-AAC-5 (n° 2), and baicalein (n° 3), the effect on the microbial metabolic activity was evaluated. Here, the top three inhibitors showed similar effectiveness, with baicalein possessing a slightly higher efficacy. Even though the 2-aminoimidazole was the second-best inhibitor, it showed a lower biocidal activity than tannic acid, making it less prone to resistance evolution. Overall, this study supports the potential of 2-aminoimidazoles as a preventive anti-biofilm strategy.


Asunto(s)
Antibacterianos , Biopelículas , Antibacterianos/farmacología , Imidazoles/farmacología , Relación Estructura-Actividad
19.
BMC Microbiol ; 20(1): 373, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33308162

RESUMEN

BACKGROUND: Environmental biofilms can induce attachment and protection of other microorganisms including pathogens, but can also prevent them from invasion and colonization. This opens the possibility for so-called biocontrol strategies, wherein microorganisms are applied to control the presence of other microbes. The potential for both positive and negative interactions between microbes, however, raises the need for in depth characterization of the sociobiology of candidate biocontrol agents (BCAs). The inside of the drinking water system (DWS) of broiler houses is an interesting niche to apply BCAs, because contamination of these systems with pathogens plays an important role in the infection of broiler chickens and consequently humans. In this study, Pseudomonas putida, which is part of the natural microbiota in the DWS of broiler houses, was evaluated as BCA against the broiler pathogen Salmonella Java. RESULTS: To study the interaction between these species, an in vitro model was developed simulating biofilm formation in the drinking water system of broilers. Dual-species biofilms of P. putida strains P1, P2, and P3 with S. Java were characterized by competitive interactions, independent of P. putida strain, S. Java inoculum density and application order. When equal inocula of S. Java and P. putida strains P1 or P3 were simultaneously applied, the interaction was characterized by mutual inhibition, whereas P. putida strain P2 showed an exploitation of S. Java. Lowering the inoculum density of S. Java changed the interaction with P. putida strain P3 also into an exploitation of S. Java. A further increase in S. Java inhibition was established by P. putida strain P3 forming a mature biofilm before applying S. Java. CONCLUSIONS: This study provides the first results showing the potential of P. putida as BCA against S. Java in the broiler environment. Future work should include more complex microbial communities residing in the DWS, additional Salmonella strains as well as chemicals typically used to clean and disinfect the system.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Agentes de Control Biológico , Agua Potable/microbiología , Pseudomonas putida/fisiología , Salmonella/fisiología , Crianza de Animales Domésticos , Animales , Pollos , Indonesia , Interacciones Microbianas
20.
J Antimicrob Chemother ; 75(10): 2864-2878, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32688391

RESUMEN

OBJECTIVES: Following a drug repurposing approach, we aimed to investigate and compare the antibacterial and antibiofilm activities of different classes of phosphate prodrugs (HepDirect, cycloSal, SATE and mix SATE) of antiviral and anticancer FDA-approved nucleoside drugs [zidovudine (AZT), floxouridine (FUDR) and gemcitabine (GEM)] against a variety of pathogenic Gram-positive and -negative bacteria. METHODS: Ten prodrugs were synthesized and screened for antibacterial activity against seven Gram-negative and two Gram-positive isolates fully susceptible to traditional antibiotics, alongside six Gram-negative and five Gram-positive isolates with resistance mechanisms. Their ability to prevent and eradicate biofilms of different bacterial pathogens in relation to planktonic growth inhibition was also evaluated, together with their effect on proliferation, viability and apoptosis of different eukaryotic cells. RESULTS: The prodrugs showed decreased antibacterial activity compared with the parent nucleosides. cycloSal-GEM-monophosphate (MP) prodrugs 20a and 20b were the most active agents against Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and retained their activity against antibiotic-resistant isolates. cycloSal-FUDR-MP 21a partially retained good activity against the Gram-positive bacteria E. faecalis, Enterococcus faecium and S. aureus. Most of the prodrugs tested displayed very potent preventive antibiofilm specific activity, but not curative. In terms of cytotoxicity, AZT prodrugs did not affect apoptosis or cell viability at the highest concentration tested, and only weak effects on apoptosis and/or cell viability were observed for GEM and FUDR prodrugs. CONCLUSIONS: Among the different prodrug approaches, the cycloSal prodrugs appeared the most effective. In particular, cycloSal (17a) and mix SATE (26) AZT prodrugs combine the lowest cytotoxicity with high and broad antibacterial and antibiofilm activity against Gram-negative bacteria.


Asunto(s)
Antineoplásicos , Antivirales , Reposicionamiento de Medicamentos , Profármacos , Antibacterianos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antivirales/farmacología , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Nucleósidos/farmacología , Fosfatos , Profármacos/farmacología , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...