Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Cardiothorac Surg ; 49(6): 1599-606, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26796110

RESUMEN

OBJECTIVES: To predict variation in thoracic surgery workforce requirements with the introduction of stereotactic ablative radiotherapy (SABR) for the treatment of early-stage non-small-cell lung cancer (NSCLC). METHODS: Using Canadian census microdata and the Canadian Community Health Survey, a microsimulation model representing the national population was developed. The demand component simulates the incidence of lung cancer, incorporating the impact of computed tomography (CT) screening for high-risk individuals (>30 pack-year smoking history; age 55-74 years). The supply component simulates the number of thoracic surgeons. SABR was introduced into the model to predict changes in the number of operable NSCLC cases per thoracic surgeon, modelling 30, 60 and 90% compliance with SABR for Stage IA and then for both Stage IA and IB NSCLC. RESULTS: In the absence of SABR, the volume of operative NSCLC per surgeon increases by a peak of 49.4% (by 2027) and then gradually declines to the present day volume by 2049. More dramatic decreases are seen with increasing compliance with SABR for Stage IA/IB NSCLCs. If the number of new surgeons entering the workforce per year were reduced by 33%, the operative volume per surgeon would increase by a peak of 57.1% (30% Stage IA SABR compliance) and would decrease by up to 49.1% (90% Stage IA SABR compliance). CONCLUSIONS: With the implementation of SABR for treatment of early NSCLC, there would be a decrease in operative volume. The impact would depend on the stage of NSCLC for which SABR is recommended and on compliance. A national strategy for thoracic surgery workforce planning is necessary, given the complex interaction of CT screening and the treatment of medically operable early NSCLC with SABR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiocirugia/métodos , Cirugía Torácica , Anciano , Canadá/epidemiología , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/epidemiología , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Modelos Teóricos , Estadificación de Neoplasias , Prevención Secundaria/métodos , Cirujanos/estadística & datos numéricos , Cirugía Torácica/tendencias , Tomografía Computarizada por Rayos X , Recursos Humanos , Carga de Trabajo/estadística & datos numéricos
2.
Ann Thorac Surg ; 98(2): 447-52, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24961839

RESUMEN

BACKGROUND: This study aimed to predict variation in the thoracic surgery workforce requirements with the introduction of a national chest computed tomographic (CT) screening program for individuals at high risk of lung cancer. METHODS: Using Canadian census microdata and the Canadian Community Health Survey, a microsimulation model representing the national population was developed. The demand component simulates the incidence of lung cancer, whereas the supply component simulates the number of practicing thoracic surgeons. A national CT screening program in high-risk individuals (>30 pack-year history of smoking; age, 55-74 years) was introduced into the model to predict changes in the number of operable lung cancers per thoracic surgeon. RESULTS: From 2013 to 2040, the Canadian population increased from 34 to 43 million. The number eligible for screening varies from 1,112,800 (2013) to 513,200 (2040), peaking at 1,147,700 (2017). Comparing CT screening with chest radiography, overall lung cancer diagnoses increase 7.3% by 2040, with stage 1A increasing by 15.6% and stage IV decreasing by 7.5%. The rate of operable early lung cancers per thoracic surgeon increases by 24.2% (2020), 19.8% (2030), and 16% (2040), with CT screening relative to the baseline increase seen with chest radiography. CONCLUSIONS: With the implementation of a CT screening program there will be an increase in operable lung cancers, resulting in increased surgical volume. A national strategy for the thoracic surgery workforce is necessary to ensure that an appropriate number of surgeons are being trained to meet the future needs of the national population.


Asunto(s)
Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/epidemiología , Modelos Estadísticos , Cirugía Torácica , Tomografía Computarizada por Rayos X , Anciano , Predicción , Humanos , Incidencia , Persona de Mediana Edad , Factores de Tiempo , Recursos Humanos
3.
J Thorac Cardiovasc Surg ; 148(1): 7-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24787697

RESUMEN

OBJECTIVE: To develop a microsimulation model of thoracic surgery workforce supply and demand to forecast future labor requirements. METHODS: The Canadian Community Health Survey and Canadian Census data were used to develop a microsimulation model. The demand component simulated the incidence of lung cancer; the supply component simulated the number of practicing thoracic surgeons. The full model predicted the rate of operable lung cancers per surgeon according to varying numbers of graduates per year. RESULTS: From 2011 to 2030, the Canadian national population will increase by 10 million. The lung cancer incidence rates will increase until 2030, then plateau and decline. The rate will vary by region (12.5% in Western Canada, 37.2% in Eastern Canada) and will be less pronounced in major cities (10.3%). Minor fluctuations in the yearly thoracic surgery graduation rates (range, 4-8) will dramatically affect the future number of practicing surgeons (range, 116-215). The rate of operable lung cancer varies from 35.0 to 64.9 cases per surgeon annually. Training 8 surgeons annually would maintain the current rate of operable lung cancer cases per surgeon per year (range, 32-36). However, this increased rate of training will outpace the lung cancer incidence after 2030. CONCLUSIONS: At the current rate of training, the incidence of operable lung cancer will increase until 2030 and then plateau and decline. The increase will outstrip the supply of thoracic surgeons, but the decline after 2030 will translate into an excess future supply. Minor increases in the rate of training in response to short-term needs could be problematic in the longer term. Unregulated workforce changes should, therefore, be approached with care.


Asunto(s)
Predicción , Fuerza Laboral en Salud/tendencias , Neoplasias Pulmonares/cirugía , Médicos/provisión & distribución , Médicos/tendencias , Cirugía Torácica/tendencias , Procedimientos Quirúrgicos Torácicos/tendencias , Canadá/epidemiología , Simulación por Computador , Educación de Postgrado en Medicina/tendencias , Humanos , Incidencia , Internado y Residencia/tendencias , Neoplasias Pulmonares/epidemiología , Modelos Teóricos , Cirugía Torácica/educación , Procedimientos Quirúrgicos Torácicos/educación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...