Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(50): 58054-58066, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051712

RESUMEN

With the progressive aging of the population, bone fractures are an increasing major health concern. Diverse strategies are being studied to reduce the recovery times using nonaggressive treatments. Electrical stimulation (either endogenous or externally applied electric pulses) has been found to be effective in accelerating bone cell proliferation and differentiation. However, the direct insertion of electrodes into tissues can cause undesirable inflammation or infection reactions. As an alternative, magnetoelectric heterostructures (wherein magnetic fields are applied to induce electric polarization) could be used to achieve electric stimulation without the need for implanted electrodes. Here, we develop a magnetoelectric platform based on flexible kapton/FeGa/P(VDF-TrFE) (flexible substrate/magnetostrictive layer/ferroelectric layer) heterostructures for remote magnetic-field-induced electric field stimulation of human osteoblast cells. We show that the use of flexible supports overcomes the clamping effects that typically occur when analogous magnetoelectric structures are grown onto rigid substrates (which preclude strain transfer from the magnetostrictive to the ferroelectric layers). The study of the diverse proliferation and differentiation markers evidence that in all the stages of bone formation (cell proliferation, extracellular matrix maturation, and mineralization), the electrical stimulation of the cells results in a remarkably better performance. The results pave the way for novel strategies for remote cell stimulation based on flexible platforms not only in bone regeneration but also in many other applications where electrical cell stimulation may be beneficial (e.g., neurological diseases or skin regeneration).


Asunto(s)
Campos Magnéticos , Osteoblastos , Humanos , Proliferación Celular , Electrodos Implantados , Estimulación Eléctrica
2.
Front Oncol ; 13: 1142170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274278

RESUMEN

Background: The possible correlation between melanoma and Parkinson's disease (PD) has been intensively studied. In this work, we aimed to assess the coincidence of skin malignancies and PD at a dermato-oncological university centre in Central-Eastern Europe, Hungary. Methods: From 2004 to 2017, a retrospective analysis of the centre's database was performed based on International Statistical Classification of Diseases-10 codes. Results: Out of the patients who visited the clinic during the study period, 20,658 were treated for malignant skin tumours. Over the 14 years, 205 dermatological patients had PD simultaneously, 111 (54%) of whom had at least one type of skin malignancy: melanoma (n=22), basal cell carcinoma (BCC) (n=82), or squamous cell carcinoma (SCC) (n=36) (in some patients, multiple skin tumours were identified). Compared to the age- and sex-matched control group, patients with PD had a significantly lower risk for basal cell carcinoma (OR, 0.65; 95% CI, 0.47-0.89, p=0.0076) and for all skin tumours (OR, 0.74; 95% CI, 0.56-0.98, p=0.0392) but not for melanoma. Conclusions: We found a decreased risk of all skin tumours and basal cell carcinoma and an unchanged risk of melanoma among patients with PD. However, it should be kept in mind that some large-scale meta-analyses suggest a higher incidence of melanoma after a diagnosis of PD, indicating the importance of skin examination in this vulnerable population.

3.
ACS Appl Mater Interfaces ; 13(38): 45679-45685, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34523338

RESUMEN

We present a detailed analysis of the temperature dependence of the thermal conductivity of a ferroelectric PbTiO3 thin film deposited in a composition-spread geometry enabling a continuous range of compositions from ∼25% titanium deficient to ∼20% titanium rich to be studied. By fitting the experimental results to the Debye model we deconvolute and quantify the two main phonon-scattering sources in the system: ferroelectric domain walls (DWs) and point defects. Our results prove that ferroelectric DWs are the main agent limiting the thermal conductivity in this system, not only in the stoichiometric region of the thin film ([Pb]/[Ti] ≈ 1) but also when the concentration of the cation point defects is significant (up to ∼15%). Hence, DWs in ferroelectric materials are a source of phonon scattering at least as effective as point defects. Our results demonstrate the viability and effectiveness of using reconfigurable DWs to control the thermal conductivity in solid-state devices.

4.
Biosens Bioelectron ; 141: 111407, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31207571

RESUMEN

Lateral flow paper-based biosensors merge as powerful tools in point-of-care diagnostics since they are cheap, portable, robust, selective, fast and easy to use. However, the sensitivity of this type of biosensors is not always as high as required, often not permitting a clear quantification. To improve the colorimetric response of standard lateral flow strips (LFs), we have applied a new enhancement strategy that increases the sensitivity of LFs based on the use of cellulose nanofibers (CNF). CNF penetrate inside the pores of LFs nitrocellulose paper, compacting the pore size only in the test line, particularly near the surface of the strip. This modification retains the bioreceptors (antibodies) close to the surface of the strips, and thus further increasing the density of selectively attached gold nanoparticles (AuNPs) in the top part of the membrane, in the test line area, only when the sample is positive. This effect boosts in average a 36.6% the sensitivity of the LFs. The optical measurements of the LFs were carried out with a mobile phone camera whose imaging resolution was improved by attaching microscopic lens on the camera objective. The characterization of CNF into paper and their effect was analyzed using atomic force microscope (AFM) and scanning electron microscope (SEM) imaging techniques.


Asunto(s)
Técnicas Biosensibles/instrumentación , Celulosa/química , Oro/química , Nanopartículas del Metal/química , Nanofibras/química , Anticuerpos Inmovilizados/química , Colodión/química , Diseño de Equipo , Humanos , Inmunoglobulina G/análisis , Tiras Reactivas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...