Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(2): e1009644, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35139074

RESUMEN

Transcription of the ~200 mouse and human ribosomal RNA genes (rDNA) by RNA Polymerase I (RPI/PolR1) accounts for 80% of total cellular RNA, around 35% of all nuclear RNA synthesis, and determines the cytoplasmic ribosome complement. It is therefore a major factor controlling cell growth and its misfunction has been implicated in hypertrophic and developmental disorders. Activation of each rDNA repeat requires nucleosome replacement by the architectural multi-HMGbox factor UBTF to create a 15.7 kbp nucleosome free region (NFR). Formation of this NFR is also essential for recruitment of the TBP-TAFI factor SL1 and for preinitiation complex (PIC) formation at the gene and enhancer-associated promoters of the rDNA. However, these promoters show little sequence commonality and neither UBTF nor SL1 display significant DNA sequence binding specificity, making what drives PIC formation a mystery. Here we show that cooperation between SL1 and the longer UBTF1 splice variant generates the specificity required for rDNA promoter recognition in cell. We find that conditional deletion of the TAF1B subunit of SL1 causes a striking depletion of UBTF at both rDNA promoters but not elsewhere across the rDNA. We also find that while both UBTF1 and -2 variants bind throughout the rDNA NFR, only UBTF1 is present with SL1 at the promoters. The data strongly suggest an induced-fit model of RPI promoter recognition in which UBTF1 plays an architectural role. Interestingly, a recurrent UBTF-E210K mutation and the cause of a pediatric neurodegeneration syndrome provides indirect support for this model. E210K knock-in cells show enhanced levels of the UBTF1 splice variant and a concomitant increase in active rDNA copies. In contrast, they also display reduced rDNA transcription and promoter recruitment of SL1. We suggest the underlying cause of the UBTF-E210K syndrome is therefore a reduction in cooperative UBTF1-SL1 promoter recruitment that may be partially compensated by enhanced rDNA activation.


Asunto(s)
Proteínas del Complejo de Iniciación de Transcripción Pol1 , ARN Polimerasa I , Animales , Niño , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , Ratones , Nucleosomas , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa I/genética , ARN Ribosómico/genética , Transcripción Genética
2.
PLoS Genet ; 13(7): e1006899, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28715449

RESUMEN

Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA) genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF) independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state of rDNA chromatin and place the Enhancer Boundary Complex as the likely entry point for chromatin remodelling complexes.


Asunto(s)
Genes de ARNr , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Polimerasa I/metabolismo , Animales , Células Cultivadas , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Femenino , Eliminación de Gen , Silenciador del Gen , Sitios Genéticos , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Embarazo , ARN Polimerasa I/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Gene ; 612: 5-11, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27614293

RESUMEN

The nucleolus is the site of ribosome biogenesis and forms around the actively transcribed ribosomal RNA (rRNA) genes. However, the nucleolus is also implicated in cell cycle regulation, tumour suppression and chromosome segregation and nucleolar disfunction is linked to a wide range of human diseases. Interestingly, the nucleolus is also required for genome reprogramming and the establishment of heterochromatin in the mammalian embryo. Mammalian oocytes contain a subnuclear structure that is believed to be the precursor of the functional nucleolus, the Nucleolar Precursor Body (NPB). But the NPB is also required for the organisation of the zygotic heterochromatin and the establishment of pluripotency. We found that disruption of the mouse Upstream Binding Factor (UBF (UBTF)) gene caused disassembly of somatic nucleoli and the accumulation of the key rRNA gene transcription factors into dense subnuclear foci resembling NPBs. Here we show that UBF deletion causes the rRNA genes to collapse onto their centromere-proximal chromosomal sites spatially distinct from NPB-like structures, and that these structures contain rRNA gene transcription factors but not all nucleolar proteins. We further find that embryonic NPBs and their surrounding heterochromatin are both disrupted in UBF-null mouse embryos. These embryos also display subnuclear foci containing the rRNA gene transcription factors and arrest development before completing the forth cleavage division. The data suggest that the rRNA gene transcription factors have an intrinsic ability to interact and form a discrete nuclear compartment even in the absence of any rRNA gene activity and that the formation or maintenance of the zygotic NPB and surrounding heterochromatin requires UBF.


Asunto(s)
Nucléolo Celular/metabolismo , Embrión de Mamíferos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Animales , Línea Celular Transformada , Hibridación Fluorescente in Situ , Ratones
4.
Methods Mol Biol ; 1455: 133-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27576716

RESUMEN

RNA metabolic labeling is a method of choice in the study of dynamic changes in the rate of gene transcription and RNA processing. It is particularly applicable to transcription of the ribosomal RNA genes and their processing products due to the very high levels of ribosomal RNA synthesis. Metabolic labeling can detect changes in ribosomal RNA transcription that occur within a few minutes as opposed to the still widely used RT-PCR or Northern blot procedures that measure RNA pool sizes and at best are able to detect changes occurring over several hours or several days. Here, we describe a metabolic labeling technique applicable to the measurement of ribosomal RNA synthesis and processing rates, as well as to the determination of RNA Polymerase I transcription elongation rates.


Asunto(s)
ARN Ribosómico/genética , Transcripción Genética , Animales , Electroforesis en Gel de Agar , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Células 3T3 NIH , ARN Polimerasa I/metabolismo , Precursores del ARN/genética , Coloración y Etiquetado , Elongación de la Transcripción Genética
5.
Methods Mol Biol ; 1334: 195-203, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26404151

RESUMEN

So-called architectural DNA-binding proteins such as those of the HMGB-box family induce DNA bending and kinking. However, these proteins often display only a weak sequence preference, making the analysis of their DNA-binding characteristics difficult if not impossible in a standard electrophoretic mobility shift assay (EMSA). In contrast, such proteins often bind prebent DNAs with high affinity and specificity. A synthetic cruciform DNA structure will often provide an ideal binding site for such proteins, allowing their affinities for both bent and linear DNAs to be directly and simply determined by a modified form of EMSA.


Asunto(s)
ADN Cruciforme/química , Proteínas de Unión al ADN/química , Ensayo de Cambio de Movilidad Electroforética/métodos , Sitios de Unión , ADN Cruciforme/genética , Proteínas de Unión al ADN/genética , Conformación de Ácido Nucleico , Unión Proteica
6.
Oncotarget ; 6(29): 27519-36, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26317157

RESUMEN

Cisplatin-DNA adducts act as strong decoys for the Upstream Binding Factor UBF (UBTF) and have been shown to inhibit transcription of the ribosomal RNA genes by RNA polymerase I. However, it is unclear if this plays a significant role in the chemotherapeutic activity of cis- or carboplatin. We find that cisplatin in fact induces a very rapid displacement of UBF from the ribosomal RNA genes and strong inhibition of ribosomal RNA synthesis, consistent with this being an important factor in its cytotoxicity. Using conditional gene deletion, we recently showed that UBF is an essential factor for transcription of the ribosomal RNA genes and for ribosome biogenesis. We now show that loss of UBF arrests cell proliferation and induces fully penetrant, rapid and synchronous apoptosis, as well as nuclear disruption and cell death, specifically in cells subjected to oncogenic stress. Apoptosis is not affected by homozygous deletion of the p53 gene and occurs equally in cells transformed by SV40 T antigens, by Myc or by a combination of Ras & Myc oncogenes. The data strongly argue that inhibition of UBF function is a major factor in the cytotoxicity of cisplatin. Hence, drug targeting of UBF may be a preferable approach to the use of the highly toxic platins in cancer therapy.


Asunto(s)
Apoptosis , Cisplatino/química , Regulación Neoplásica de la Expresión Génica , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Ciclo Celular , Muerte Celular , Línea Celular Transformada , Proliferación Celular , Separación Celular , Transformación Celular Neoplásica , Replicación del ADN , Femenino , Citometría de Flujo , Eliminación de Gen , Silenciador del Gen , Homocigoto , Masculino , Ratones , Ratones Transgénicos , Mitosis , Neoplasias/tratamiento farmacológico , Neoplasias/patología , ARN Polimerasa I/metabolismo , ARN Ribosómico/metabolismo , Ribosomas/química , Proteína p53 Supresora de Tumor/metabolismo
7.
PLoS Genet ; 10(8): e1004505, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25121932

RESUMEN

Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB) of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs).


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Ribosomas/genética , Transcripción Genética , Animales , Nucléolo Celular/genética , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Histonas/genética , Histonas/metabolismo , Ratones , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/antagonistas & inhibidores , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/genética , ARN Ribosómico/genética
8.
Nucleic Acids Res ; 40(12): 5357-67, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22383580

RESUMEN

The ARF tumour suppressor stabilizes p53 by negatively regulating the E3 ubiquitin ligase MDM2 to promote cell cycle arrest and cell death. However, ARF is also able to arrest cell proliferation by inhibiting ribosome biogenesis. In greater part this is achieved by targeting the transcription termination factor I (TTF-I) for nucleolar export, leading to an inhibition of both ribosomal RNA synthesis and processing. We now show that in the absence of ARF, TTF-I is ubiquitinylated by MDM2. MDM2 interacts directly with TTF-I and regulates its cellular abundance by targeting it for degradation by the proteasome. Enhanced TTF-I levels inhibit ribosome biogenesis by suppressing ribosomal RNA synthesis and processing, strongly suggesting that exact TTF-I levels are critical for efficient ribosome biogenesis. We further show that concomitant with its ability to displace TTF-I from the nucleolus, ARF inhibits MDM2 ubiquitinylation of TTF-I by competitively binding to a site overlapping the MDM2 interaction site. Thus, both the sub-nuclear localization and the abundance of TTF-I are key regulators of ribosome biogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ribosomas/metabolismo , Ubiquitinación , Animales , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Factores de Transcripción , Proteína p14ARF Supresora de Tumor/metabolismo
9.
EMBO Rep ; 12(3): 231-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21331097

RESUMEN

The Christmas tree view of active ribosomal RNA (rRNA) genes suggests a gene topology in which a large number of nascent rRNA transcripts are prevented from intertwining. The way in which this is achieved has remained unclear. By using a combination of chromatin immunoprecipitation and chromosome conformation capture techniques, we show that the promoter, upstream region and terminator R3 of active rRNA genes are held together spatially throughout the cell cycle, forming a stable core around which the transcribed region is organized. We suggest a new core-helix model for the topology of rRNA genes, that provides a structural basis for the productive synthesis or rRNA.


Asunto(s)
Ciclo Celular , Cromosomas Humanos/genética , Genes de ARNr , Modelos Moleculares , ARN Ribosómico/biosíntesis , Transcripción Genética , Northern Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cromosomas Humanos/química , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Relación Estructura-Actividad , Proteína de Unión a TATA-Box/metabolismo , Regiones Terminadoras Genéticas
10.
Mol Cell ; 38(4): 539-50, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20513429

RESUMEN

The p14/p19(ARF) (ARF) product of the CDKN2A gene displays tumor suppressor activity both in the presence and absence of p53/TP53. In p53-negative cells, ARF arrests cell proliferation, at least in part, by suppressing ribosomal RNA synthesis. We show that ARF does this by controlling the subnuclear localization of the RNA polymerase I transcription termination factor, TTF-I. TTF-I shuttles between nucleoplasm and nucleolus with the aid of the chaperone NPM/B23 and a nucleolar localization sequence within its N-terminal regulatory domain. ARF inhibits nucleolar import of TTF-I by binding to this nucleolar localization sequence, causing the accumulation of TTF-I in the nucleoplasm. Depletion of TTF-I recapitulates the effects of ARF on ribosomal RNA synthesis and is rescued by the introduction of a TTF-I transgene. Thus, our data delineate the pathway by which ARF regulates ribosomal RNA synthesis and provide a compelling explanation for the role of NPM.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ARN Polimerasa I/metabolismo , Ribosomas/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Animales , Línea Celular , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Factores de Transcripción
11.
Mol Cell ; 35(4): 414-25, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716787

RESUMEN

Epigenetic methyl-CpG silencing of the ribosomal RNA (rRNA) genes is thought to downregulate rRNA synthesis in mammals. In contrast, we now show that CpG methylation in fact positively influences rRNA synthesis and processing. Human HCT116 cells, inactivated for DNMT1 and DNMT3b or treated with aza-dC, lack CpG methylation and reactivate a large fraction of normally silent rRNA genes. Unexpectedly, these cells display reduced rRNA synthesis and processing and accumulate unprocessed 45S rRNA. Reactivation of the rRNA genes is associated with their cryptic transcription by RNA polymerase II. Ectopic expression of cryptic rRNA gene transcripts recapitulates the defects associated with loss of CpG methylation. The data demonstrate that rRNA gene silencing prevents cryptic RNA polymerase II transcription of these genes. Lack of silencing leads to the partial disruption of rRNA synthesis and rRNA processing, providing an explanation for the cytotoxic effects of loss of CpG methylation.


Asunto(s)
Nucléolo Celular/metabolismo , Islas de CpG , Metilación de ADN , ADN Ribosómico/metabolismo , ARN Polimerasa II/metabolismo , ARN Ribosómico/metabolismo , Transcripción Genética , Azacitidina/análogos & derivados , Azacitidina/farmacología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/patología , Proliferación Celular , Supervivencia Celular , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Decitabina , Inhibidores Enzimáticos/farmacología , Células HCT116 , Humanos , Cinética , ARN Polimerasa II/genética , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Transcripción Genética/efectos de los fármacos , ADN Metiltransferasa 3B
12.
Methods Mol Biol ; 543: 537-46, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19378185

RESUMEN

So-called architectural DNA binding proteins such as those of the HMGB-box family induce DNA bending and kinking. However, these proteins often display only a weak sequence preference, making the analysis of their DNA binding characteristics difficult if not impossible in a standard electrophoretic mobility assay (EMSA). In contrast, such proteins often bind prebent DNAs with high affinity and specificity. A synthetic cruciform DNA structure will often provide an ideal binding site for such proteins, allowing their affinities for both bent and linear DNAs to be directly and simply determined by a modified form of EMSA.


Asunto(s)
ADN Cruciforme/química , ADN Cruciforme/metabolismo , Ensayo de Cambio de Movilidad Electroforética/métodos , Conformación de Ácido Nucleico , Proteínas/análisis , Proteínas/metabolismo , Especificidad de Anticuerpos , ADN Cruciforme/aislamiento & purificación , Oligonucleótidos , Unión Proteica , Coloración y Etiquetado , Especificidad por Sustrato
13.
J Cell Biol ; 183(7): 1259-74, 2008 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-19103806

RESUMEN

In mammals, the mechanisms regulating the number of active copies of the approximately 200 ribosomal RNA (rRNA) genes transcribed by RNA polymerase I are unclear. We demonstrate that depletion of the transcription factor upstream binding factor (UBF) leads to the stable and reversible methylation-independent silencing of rRNA genes by promoting histone H1-induced assembly of transcriptionally inactive chromatin. Chromatin remodeling is abrogated by the mutation of an extracellular signal-regulated kinase site within the high mobility group box 1 domain of UBF1, which is required for its ability to bend and loop DNA in vitro. Surprisingly, rRNA gene silencing does not reduce net rRNA synthesis as transcription from remaining active genes is increased. We also show that the active rRNA gene pool is not static but decreases during differentiation, correlating with diminished UBF expression. Thus, UBF1 levels regulate active rRNA gene chromatin during growth and differentiation.


Asunto(s)
Genes de ARNr/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Metilación de ADN , ADN Ribosómico/metabolismo , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Dominios HMG-Box , Histonas/metabolismo , Ratones , Modelos Genéticos , Células 3T3 NIH , Isoformas de Proteínas/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Transcripción Genética
14.
Nucleic Acids Res ; 36(15): 5093-101, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18676449

RESUMEN

The mammalian architectural HMGB-Box transcription factor UBF is ubiquitously expressed in two variant forms as the result of a differential splicing event, that in the UBF2 deletes 37 amino acid from the second of six HMGB-boxes. Several attempts to define a function for this shorter UBF2 protein have been less than satisfactory. However, since all mammals appear to display similar levels of the longer and shorter UBF variants, it is unlikely that UBF2 is simply nonfunctional. Previously we showed that phosphorylation of UBF by the MAP-kinase ERK regulates chromatin folding and transcription elongation, explaining the rapid response of the ribosomal RNA genes to growth factors. Here we have investigated the roles the UBF variants play in the response of these genes to ERK activity. We demonstrate that the variant HMGB-box 2 of UBF2 has lost the ability to bind bent DNA and hence to induce chromatin folding. As a result it is significantly less effective than UBF1 at arresting RNAPI elongation but at the same time is more responsive to ERK phosphorylation. Thus, UBF2 functionally simulates a hemi-phosphorylated UBF whose expression may provide a means by which to tune the response of the ribosomal RNA genes to growth factor stimulation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Proteínas del Complejo de Iniciación de Transcripción Pol1/fisiología , ARN Polimerasa I/metabolismo , Transcripción Genética , Animales , ADN/química , ADN/metabolismo , Variación Genética , Dominios HMG-Box , Proteínas HMGB/química , Ratones , Fosforilación , Proteínas del Complejo de Iniciación de Transcripción Pol1/química , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Polimerasa I/antagonistas & inhibidores , Empalme del ARN , Ratas
15.
Cell Cycle ; 5(7): 735-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16582637

RESUMEN

Growth regulation of the tandemly repeated ribosomal RNA (rRNA) genes in mammals can potentially occur by several distinct mechanisms. Only a fraction of the 200 or so rRNA genes appears to be activated in somatic cells, leaving open the possibility that enhanced transcription could result from gene activation events. Here we have determined the active rRNA gene count after growth stimulation with EGF, direct Raf activation and chromatin hyperacetylation and after inhibiting MAP-kinase signaling. Despite robust changes in rRNA transcription rates, we find no significant variation in active gene number in either mouse fibroblasts or human neuroepithelioma cells. Interestingly, the data also show that rRNA transcription enhancement induced by hyperacetylation is dependent on MEK/ERK signaling. Since ERK and the acetyltransferase CBP both bind the architectural factor UBF, this suggests a mechanism for targeting active CBP to the rRNA genes.


Asunto(s)
Dosificación de Gen/genética , Regulación de la Expresión Génica , ARN Ribosómico/biosíntesis , Acetilación/efectos de los fármacos , Animales , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Ratones , Células 3T3 NIH , ARN Ribosómico/genética , Activación Transcripcional , Células Tumorales Cultivadas , Quinasas raf/metabolismo
16.
Biochemistry ; 45(11): 3626-34, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16533045

RESUMEN

Transcription of the ribosomal RNA genes of mammals by RNA polymerase I is rapidly activated by epidermal growth factor via the MAP-kinase (ERK) signaling cascade. This activation is mediated by direct phosphorylation of the HMG box DNA binding domains of the architectural transcription factor UBF. Mutation of the ERK sites of UBF inhibits its normal function and blocks growth factor activation of ribosomal transcription. UBF has little or no DNA sequence selectivity and binds throughout the ribosomal genes, defining a specialized chromatin. Indeed, the HMG boxes of UBF induce looping of the ribosomal DNA to create the enhancesome, a structure somewhat reminiscent of the nucleosome. Here, we show that both ERK phosphorylation and mutations that simulate this phosphorylation decrease the affinity of the individual HMG boxes of UBF for linear ribosomal DNA but have little or no effect on the capacity of these HMG boxes to bind to pre-bent DNA and do not affect the overall binding constant of UBF for the DNA. Electron spectroscopic imaging showed that ERK site UBF mutants do not induce the characteristic DNA looping of the enhancesome and associate with no more than half of the enhancesomal DNA. The data demonstrate that ERK phosphorylation of UBF prevents DNA bending by its first two HMG boxes, leading to a cooperative unfolding of the enhancesome.


Asunto(s)
ADN/metabolismo , Elementos de Facilitación Genéticos , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , ADN Cruciforme/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/aislamiento & purificación , Unión Proteica , ARN Polimerasa I/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Transcripción Genética , Xenopus laevis/metabolismo
17.
Mol Cell ; 21(5): 629-39, 2006 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-16507361

RESUMEN

Synthesis of the 45S rRNA by RNA polymerase I limits cell growth. Knowledge of the mechanism of its regulation is therefore key to understanding growth control. rRNA transcription is believed to be regulated solely at initiation/promoter release. However, we found that stimulation of endogenous 45S rRNA synthesis by epidermal growth factor (EGF) and serum failed to induce an increase in RNA polymerase I engagement on the rRNA genes, despite robust enhancement of 45S rRNA synthesis. Further, endogenous transcription elongation rates were measured and found to be directly proportional to 45S rRNA synthesis. Thus, elongation is a rate-limiting step for rRNA synthesis in vivo. ERK phosphorylation of the HMG boxes of UBF, an RNA polymerase I factor essential for transcription enhancement, was shown to directly regulate elongation by inducing the remodeling of ribosomal gene chromatin. The data suggest a mechanism for coordinating the cotranscriptional assembly of preribosomal particles.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Sustancias de Crecimiento/fisiología , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/genética , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Animales , ADN Ribosómico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Ratones , Células 3T3 NIH , Fosforilación , Proteínas del Complejo de Iniciación de Transcripción Pol1/fisiología , ARN Polimerasa I/biosíntesis , ARN Ribosómico/biosíntesis
18.
Cell ; 109(5): 545-8, 2002 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-12062097

RESUMEN

The ribosomal RNA genes encode the enzymatic scaffold of the ribosome and thereby perform perhaps the most basic of all housekeeping functions. However, recent data suggests that they might also control important aspects of cell behavior.


Asunto(s)
Nucléolo Celular/genética , Células Eucariotas/metabolismo , Regulación de la Expresión Génica/genética , Genes/genética , ARN Ribosómico/genética , Transcripción Genética/genética , Animales , Células Eucariotas/citología , Silenciador del Gen/fisiología , Humanos , Regiones Promotoras Genéticas/genética , ARN Polimerasa I/genética , ARN Ribosómico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...