Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 23(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486450

RESUMEN

Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas de Escherichia coli/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Glucosa/análisis , Proteínas Luminiscentes/química , Proteínas de Transporte de Monosacáridos/química , Glucosa/química
2.
ACS Sens ; 3(8): 1462-1470, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29979038

RESUMEN

Genetically encoded Förster resonance energy transfer (FRET)-based biosensors for the quantification of ligand molecules change the magnitude of FRET between two fluorescent proteins upon binding a target metabolite. When highly sensitive sensors are being designed, extensive sensor optimization is essential. However, it is often difficult to verify the ideas of modifications made to a sensor during the sensor optimization process because of the limited information content of ensemble FRET measurements. In contrast, single-molecule detection provides detailed information and higher accuracy. Here, we investigated a set of glucose and crowding sensors on the single-molecule level. We report the first comprehensive single-molecule study of FRET-based biosensors with reasonable counting statistics and identify characteristics in the single-molecule FRET histograms that constitute fingerprints of sensor performance. Hence, our single-molecule approach extends the toolbox of methods aiming to understand and optimize the design of FRET-based biosensors.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia , Glucosa/análisis , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Polietilenglicoles/química
3.
Sensors (Basel) ; 16(10)2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27690044

RESUMEN

Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET)-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP) flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP), Citrine). Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum) strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

4.
J Biotechnol ; 191: 250-9, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25107505

RESUMEN

A broad range of genetically-encoded fluorescence biosensors has been developed, allowing the detection of signaling intermediates and metabolites in real time. Many of these biosensors are based on Foerster Resonance Energy Transfer (FRET). The two biosensors of the well-known "Venus-flytrap" type exemplarily studied in this work are composed of a central sugar binding protein flanked by two green fluorescent protein derivatives, namely ECFP as well as Citrine and EYFP, respectively. In order to evaluate FRET-based biosensors as an in vivo tool for quantitative metabolite analyses, we have thoroughly studied the effects of pH, buffer salts, ionic strength, temperature and several intracellular metabolites on the signal intensity of both biosensors and both fluorescence proteins. Almost all micro-environmental variations led to considerably different FRET signals, because either the fluorescent proteins or the metabolite binding domains were affected by the tested parameters. This resulted not only in altered FRET ratios between the apo state and the saturated state but also in significant shifts of the apparent binding constant. This underlines the necessity of careful controls in order to allow reliable quantitative measurements in vivo.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas/metabolismo , Concentración de Iones de Hidrógeno , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/aislamiento & purificación
5.
Microb Cell Fact ; 13(1): 46, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24661794

RESUMEN

BACKGROUND: Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. RESULTS: To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. CONCLUSIONS: In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the basis for a next generation production host, since the strain has still a large potential for further genetic engineering. The final amylase titer of 65% in reference to B. licheniformis protease titer suggests that the developed B. pumilus expression platform is also suitable for an efficient production of non-proteolytic enzymes reaching a final titer of several grams per liter without complex process modifications.


Asunto(s)
Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Péptido Hidrolasas/metabolismo , Bacillus/crecimiento & desarrollo , Proteínas Bacterianas/genética , Técnicas de Cultivo Celular por Lotes , Biotecnología , Péptido Hidrolasas/genética , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...