Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 237: 109620, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263575

RESUMEN

Increased activity in the insula has been consistently reported to be associated with anxiety and anxiety-related disorders. However, little is known on how the insula regulates anxiety. The present study aims at determining the role of the insula on the effects of glucocorticoids in anxiety. A combination of pharmacological manipulations, including blockade of adrenal GC synthesis by metyrapone and intra-insular microinjections of corticosterone, corticosterone-BSA, mineralocorticoid receptor (MR) antagonist spironolactone and glucocorticoid receptor (GR) antagonist mifepristone, were used to assess the short-term (5 min) effects of intra-insular corticosterone in two anxiety-like behaviors in male Sprague-Dawley rats. The elevated plus maze (EPM) and Novelty Suppressed Feeding (hyponeophagia) were utilized. We found that corticosterone in the insula is sufficient to prevent the anxiolytic effects corticosterone synthesis blockade in anxiety, and that intra-insular corticosterone has anxiolytic or anxiogenic effects depending on the amount of corticosterone microinjected and the arousal associated to the test, without affecting the HPA axis. Glucocorticoid anxiolytic effects in the insula are mediated by MRs, while its anxiogenic effects are dependent on a mifepristone-sensitive membrane-bound mechanism. Anxiety appears to be modulated at the insula through a competition between fast MR-dependent anxiolytic and membrane-associated anxiogenic signaling pathways that orchestrate the behavioral response to stress and determines the resulting level of anxiety.


Asunto(s)
Ansiolíticos , Glucocorticoides , Ratas , Animales , Masculino , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Corticosterona/metabolismo , Ansiolíticos/farmacología , Mifepristona/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Receptores de Mineralocorticoides/metabolismo
2.
Adv Exp Med Biol ; 1408: 163-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093427

RESUMEN

Dexmedetomidine is an adrenergic receptor agonist that has been regarded as neuroprotective in several studies without an objective measure to it. Thus, the aim of this meta-analysis was to analyze and quantify the current evidence for the neuroprotective effects of dexmedetomidine in animals. The search was performed by querying the National Library of Medicine. Studies were included based on their language, significancy of their results, and complete availability of data on animal characteristics and interventions. Risk of bias was assessed using SYRCLE's risk of bias tool and certainty was assessed using the ARRIVE Guidelines 2.0. Synthesis was performed by calculating pooled standardized mean difference and presented in forest plots and tables. The number of eligible records included per outcome is the following: 22 for IL-1ß, 13 for IL-6, 19 for apoptosis, 7 for oxidative stress, 7 for Escape Latency, and 4 for Platform Crossings. At the cellular level, dexmedetomidine was found protective against production of IL-1ß (standardized mean difference (SMD) = - 4.3 [- 4.8; - 3.7]) and IL-6 (SMD = - 5.6 [- 6.7; - 4.6]), apoptosis (measured through TUNEL, SMD = - 6.0 [- 6.8; - 4.6]), and oxidative stress (measured as MDA production, SMD = - 2.0 [- 2.4; - 1.4]) exclusively in the central nervous system. At the organism level, dexmedetomidine improved behavioral outcomes measuring escape latency (SMD = - 2.4 [- 3.3; - 1.6]) and number of platform crossings (SMD = 9.1 [- 6.8; - 11.5]). No eligible study had high risk of bias and certainty was satisfactory for reproducibility in all cases. This meta-analysis highlights the complexity of adrenergic stimulation and sheds light into the mechanisms potentiated by dexmedetomidine, which could be exploited for improving current neuroprotective formulations.


Asunto(s)
Dexmedetomidina , Fármacos Neuroprotectores , Estados Unidos , Interleucina-6 , Reproducibilidad de los Resultados
3.
Psychiatry Res ; 324: 115179, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030054

RESUMEN

Phase IV study evaluated Deep TMS for major depression in community settings. Data were aggregated from 1753 patients at 21 sites, who received Deep TMS (high frequency or iTBS) using the H1 coil. Outcome measures varied across subjects and included clinician-based scales (HDRS-21) and self-assessment questionnaires (PHQ-9, BDI-II). 1351 patients were included in the analysis, 202 received iTBS. For participants with data from at least 1 scale, 30 sessions of Deep TMS led to 81.6% response and 65.3% remission rate. 20 sessions led to 73.6% response and 58.1% remission rate. iTBS led to 72.4% response and 69.2% remission. Remission rates were highest when assessed with HDRS (72%). In 84% of responders and 80% of remitters, response and remission was sustained in the subsequent assessment. Median number of sessions (days) for onset of sustained response was 16 (21 days) and for sustained remission 17 (23 days). Higher stimulation intensity was associated with superior clinical outcomes. This study shows that beyond its proven efficacy in RCTs, Deep TMS with the H1 coil is effective for treating depression under naturalistic conditions, and the onset of improvement is usually within 20 sessions. However, initial non-responders and non-remitters benefit from extended treatment.


Asunto(s)
Depresión , Trastorno Depresivo Mayor , Humanos , Depresión/terapia , Resultado del Tratamiento , Estimulación Magnética Transcraneal/métodos , Trastorno Depresivo Mayor/terapia , Corteza Prefrontal
4.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978791

RESUMEN

Sepsis syndrome is a highly lethal uncontrolled response to an infection, which is characterized by sepsis-induced coagulopathy (SIC). High-density lipoprotein (HDL) exhibits antithrombotic activity, regulating coagulation in vascular endothelial cells. Sepsis induces the release of several proinflammatory molecules, including reactive oxygen species, which lead to an increase in oxidative stress in blood vessels. Thus, circulating lipoproteins, such as HDL, are oxidized to oxHDL, which promotes hemostatic dysfunction, acquiring prothrombotic properties linked to the severity of organ failure in septic-shock patients (SSP). However, a rigorous and comprehensive investigation demonstrating that oxHDL is associated with a coagulopathy-associated deleterious outcome of SSP, has not been reported. Thus, we investigated the participation of plasma oxHDL in coagulopathy-associated sepsis pathogenesis and elucidated the underlying molecular mechanism. A prospective study was conducted on 42 patients admitted to intensive care units, (26 SSP and 16 non-SSP) and 39 healthy volunteers. We found that an increased plasma oxHDL level in SSP was associated with a prothrombotic phenotype, increased mortality and elevated risk of death, which predicts mortality in SSP. The underlying mechanism indicates that oxHDL triggers an endothelial protein expression reprogramming of coagulation factors and procoagulant adhesion proteins, to produce a prothrombotic environment, mainly mediated by the endothelial LOX-1 receptor. Our study demonstrates that an increased plasma oxHDL level is associated with coagulopathy in SSP through a mechanism involving the endothelial LOX-1 receptor and endothelial protein expression regulation. Therefore, the plasma oxHDL level plays a role in the molecular mechanism associated with increased mortality in SSP.

5.
Biomolecules ; 13(3)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36979346

RESUMEN

BACKGROUND: Connexins (Cxs) are proteins that help cells to communicate with the extracellular media and with the cytoplasm of neighboring cells. Despite their importance in several human physiological and pathological conditions, their pharmacology is very poor. In the last decade, some molecules derived from aminoglycosides have been developed as inhibitors of Cxs hemichannels. However, these studies have been performed in E. coli, which is a very simple model. Therefore, our main goal is to test whether these molecules have similar effects in mammalian cells. METHODS: We transfected HeLa cells with the human Cx46tGFP and characterized the effect of a kanamycin-derived molecule (KI04) on Cx46 hemichannel activity by time-lapse recordings, changes in phosphorylation by Western blot, localization by epifluorescence, and possible binding sites by molecular dynamics (MD). RESULTS: We observed that kanamycin and KI04 were the most potent inhibitors of Cx46 hemichannels among several aminoglycosides, presenting an IC50 close to 10 µM. The inhibitory effect was not associated with changes in Cx46 electrophoretic mobility or its intracellular localization. Interestingly, 5 mM DTT did not reverse KI04 inhibition, but the KI04 effect completely disappeared after washing out KI04 from the recording media. MD analysis revealed two putative binding sites of KI04 in the Cx46 hemichannel. RESULTS: These results demonstrate that KI04 could be used as a Cx46 inhibitor and could help to develop future selective Cx46 inhibitors.


Asunto(s)
Aminoglicósidos , Escherichia coli , Animales , Humanos , Células HeLa , Escherichia coli/metabolismo , Conexinas/metabolismo , Antibacterianos , Kanamicina/farmacología , Mamíferos/metabolismo
6.
Psychiatry Res ; 320: 115036, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586377

RESUMEN

Activation of the insula is found in all anxiety-related disorders and increased insular-prefrontal cortex (PFC) functional connectivity is associated with reduced anxiety. In this study, the combined stimulation of the insula and PFC using the dTMS H4 (insula+LPFC) and H2 (PFC) coils were used to reduce anxiety in 13 subjects experiencing occupational stress, and 55 participants suffering from generalized anxiety disorder (GAD). The combined HF stimulation of the insula and PFC significantly decreased anxiety scores according to the HARS, CAS, and STAI anxiety scales, leading to a reduction in anxiety according to HARS of 88.7% and 70.7% in participants with occupational stress and the clinical sample of participants diagnosed with GAD, respectively. The findings suggest that the prefrontal-insular axis is critical for the regulation of anxiety and its stimulation can be used for the treatment of anxiety in people suffering from occupational stress and GAD.


Asunto(s)
Imagen por Resonancia Magnética , Estrés Laboral , Humanos , Trastornos de Ansiedad/terapia , Corteza Prefrontal/diagnóstico por imagen , Ansiedad/terapia
7.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362410

RESUMEN

Gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is produced by interneurons and recycled by astrocytes. In neurons, GABA activates the influx of Cl- via the GABAA receptor or efflux or K+ via the GABAB receptor, inducing hyperpolarization and synaptic inhibition. In astrocytes, the activation of both GABAA and GABAB receptors induces an increase in intracellular Ca2+ and the release of glutamate and ATP. Connexin 43 (Cx43) hemichannels are among the main Ca2+-dependent cellular mechanisms for the astroglial release of glutamate and ATP. However, no study has evaluated the effect of GABA on astroglial Cx43 hemichannel activity and Cx43 hemichannel-mediated gliotransmission. Here we assessed the effects of GABA on Cx43 hemichannel activity in DI NCT1 rat astrocytes and hippocampal brain slices. We found that GABA induces a Ca2+-dependent increase in Cx43 hemichannel activity in astrocytes mediated by the GABAA receptor, as it was blunted by the GABAA receptor antagonist bicuculline but unaffected by GABAB receptor antagonist CGP55845. Moreover, GABA induced the Cx43 hemichannel-dependent release of glutamate and ATP, which was also prevented by bicuculline, but unaffected by CGP. Gliotransmission in response to GABA was also unaffected by pannexin 1 channel blockade. These results are discussed in terms of the possible role of astroglial Cx43 hemichannel-mediated glutamate and ATP release in regulating the excitatory/inhibitory balance in the brain and their possible contribution to psychiatric disorders.


Asunto(s)
Astrocitos , Conexina 43 , Ratas , Animales , Conexina 43/metabolismo , Astrocitos/metabolismo , Receptores de GABA-A , Bicuculina/farmacología , Animales Recién Nacidos , Células Cultivadas , Ácido Glutámico/farmacología , Ácido gamma-Aminobutírico/farmacología , Adenosina Trifosfato/farmacología
8.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806258

RESUMEN

Connexin (Cxs) hemichannels participate in several physiological and pathological processes, but the molecular mechanisms that control their gating remain elusive. We aimed at determining the role of extracellular cysteines (Cys) in the gating and function of Cx46 hemichannels. We studied Cx46 and mutated all of its extracellular Cys to alanine (Ala) (one at a time) and studied the effects of the Cys mutations on Cx46 expression, localization, and hemichannel activity. Wild-type Cx46 and Cys mutants were expressed at comparable levels, with similar cellular localization. However, functional experiments showed that hemichannels formed by the Cys mutants did not open either in response to membrane depolarization or removal of extracellular divalent cations. Molecular-dynamics simulations showed that Cys mutants may show a possible alteration in the electrostatic potential of the hemichannel pore and an altered disposition of important residues that could contribute to the selectivity and voltage dependency in the hemichannels. Replacement of extracellular Cys resulted in "permanently closed hemichannels", which is congruent with the inhibition of the Cx46 hemichannel by lipid peroxides, through the oxidation of extracellular Cys. These results point to the modification of extracellular Cys as potential targets for the treatment of Cx46-hemichannel associated pathologies, such as cataracts and cancer, and may shed light into the gating mechanisms of other Cx hemichannels.


Asunto(s)
Uniones Comunicantes , Activación del Canal Iónico , Conexinas/metabolismo , Cisteína/metabolismo , Uniones Comunicantes/metabolismo
9.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806360

RESUMEN

Neuropathic pain reduces GABA and glycine receptor (GlyR)-mediated activity in spinal and supraspinal regions associated with pain processing. Interleukin-1ß (IL-1ß) alters Central Amygdala (CeA) excitability by reducing glycinergic inhibition in a mechanism that involves the auxiliary ß-subunit of GlyR (ßGlyR), which is highly expressed in this region. However, GlyR activity and its modulation by IL-1ß in supraspinal brain regions under neuropathic pain have not been studied. We performed chronic constriction injury (CCI) of the sciatic nerve in male Sprague Dawley rats, a procedure that induces hind paw plantar hyperalgesia and neuropathic pain. Ten days later, the rats were euthanized, and their brains were sliced. Glycinergic spontaneous inhibitory currents (sIPSCs) were recorded in the CeA slices. The sIPSCs from CeA neurons of CCI animals show a bimodal amplitude distribution, different from the normal distribution in Sham animals, with small and large amplitudes of similar decay constants. The perfusion of IL-1ß (10 ng/mL) in these slices reduced the amplitudes within the first five minutes, with a pronounced effect on the largest amplitudes. Our data support a possible role for CeA GlyRs in pain processing and in the neuroimmune modulation of pain perception.


Asunto(s)
Núcleo Amigdalino Central , Neuralgia , Animales , Núcleo Amigdalino Central/metabolismo , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Masculino , Neuralgia/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glicina/metabolismo
10.
Stress ; 25(1): 145-155, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35384793

RESUMEN

Worldwide, millions of people suffer from treatment-resistant depression. Ketamine, a glutamatergic receptor antagonist, can have a rapid antidepressant effect even in treatment-resistant patients. A proposed mechanism for the antidepressant effect of ketamine is the reduction of neuroinflammation. To further explore this hypothesis, we investigated whether a single dose of ketamine can modulate protracted neuroinflammation in a repeated social defeat (RSD) stress rat model, which resembles features of depression. To this end, male animals exposed to RSD were injected with ketamine (20 mg/kg) or vehicle. A combination of behavioral analyses and PET scans of the inflammatory marker TSPO in the brain were performed. Rats submitted to RSD showed anhedonia-like behavior in the sucrose preference test, decreased weight gain, and increased TSPO levels in the insular and entorhinal cortices, as observed by [11C]-PK11195 PET. Whole brain TSPO levels correlated with corticosterone levels in several brain regions of RSD exposed animals, but not in controls. Ketamine injection 1 day after RSD disrupted the correlation between TSPO levels and serum corticosterone levels, but had no effect on depressive-like symptoms, weight gain or the protracted RSD-induced increase in TSPO expression in male rats. These results suggest that ketamine does not exert its effect on the hypothalamic-pituitary-adrenal axis by modulation of neuroinflammation.


Asunto(s)
Anhedonia , Ketamina , Enfermedades Neuroinflamatorias , Animales , Antidepresivos/farmacología , Proteínas Portadoras , Corticosterona , Depresión/metabolismo , Depresión/prevención & control , Modelos Animales de Enfermedad , Sistema Hipotálamo-Hipofisario/metabolismo , Ketamina/farmacología , Masculino , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Receptores de GABA/metabolismo , Receptores de GABA-A , Estrés Psicológico/metabolismo , Aumento de Peso
11.
FASEB J ; 36(2): e22134, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35061296

RESUMEN

Astrocytes release gliotransmitters via connexin 43 (Cx43) hemichannels into neighboring synapses, which can modulate synaptic activity and are necessary for fear memory consolidation. However, the gliotransmitters released, and their mechanisms of action remain elusive. Here, we report that fear conditioning training elevated Cx43 hemichannel activity in astrocytes from the basolateral amygdala (BLA). The selective blockade of Cx43 hemichannels by microinfusion of TAT-Cx43L2 peptide into the BLA induced memory deficits 1 and 24 h after training, without affecting learning. The memory impairments were prevented by the co-injection of glutamate and D-serine, but not by the injection of either alone, suggesting a role for NMDA receptors (NMDAR). The incubation with TAT-Cx43L2 decreased NMDAR-mediated currents in BLA slices, effect that was also prevented by the addition of glutamate and D-serine. NMDARs in primary neuronal cultures were unaffected by TAT-Cx43L2, ruling out direct effects of the peptide on NMDARs. Finally, we show that D-serine permeates through purified Cx43 hemichannels reconstituted in liposomes. We propose that the release of glutamate and D-serine from astrocytes through Cx43 hemichannels is necessary for the activation of post-synaptic NMDARs during training, to allow for the formation of short-term and subsequent long-term memory, but not for learning per se.


Asunto(s)
Astrocitos/metabolismo , Complejo Nuclear Basolateral/metabolismo , Conexina 43/metabolismo , Miedo/fisiología , Memoria a Corto Plazo/fisiología , Neurotransmisores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Ácido Glutámico/metabolismo , Masculino , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Serina/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166232, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34363932

RESUMEN

In our body, all the cells are constantly sharing chemical and electrical information with other cells. This intercellular communication allows them to respond in a concerted way to changes in the extracellular milieu. Connexins are transmembrane proteins that have the particularity of forming two types of channels; hemichannels and gap junction channels. Under normal conditions, hemichannels allow the controlled release of signaling molecules to the extracellular milieu. However, under certain pathological conditions, over-activated hemichannels can induce and/or exacerbate symptoms. In the last decade, great efforts have been put into developing new tools that can modulate these over-activated hemichannels. Small molecules, antibodies and mimetic peptides have shown a potential for the treatment of human diseases. In this review, we summarize recent findings in the field of hemichannel modulation via specific tools, and how these tools could improve patient outcome in certain pathological conditions.


Asunto(s)
Conexinas/antagonistas & inhibidores , Quimioterapia/métodos , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Conexinas/metabolismo , Humanos , Modelos Animales
13.
Neuropharmacology ; 197: 108751, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375626

RESUMEN

Fluoxetine is often prescribed to treat depression during pregnancy. Rodent studies have shown that fluoxetine exposure during early development can induce persistent changes in the emotional behavior of the offspring. However, the effects of prenatal fluoxetine on memory have not been elucidated. This study evaluates the memory of adult male offspring from rat dams orally administered with a clinically relevant dose of 0.7 mg/kg fluoxetine from 9 weeks before pregnancy to 1 week before delivery. Hippocampal-dependent (Morris Water Maze, MWM) and non-hippocampal-dependent (Novel Object Recognition, NOR) memory paradigms were assessed. Anxiety- and depressive-like symptoms were also evaluated using the Open Field Test, Tail Suspension Test and Sucrose Preference Test. Male rats exposed to fluoxetine during gestation displayed NOR memory impairments during adulthood, as well as increased anxiety- and depressive-like symptoms. In the MWM, the offspring of fluoxetine-treated dams did not show learning deficits. However, a retention impairment was found on remote memory, 15 days after the end of training. Molecular analyses showed increased expression of NMDA subunit NR2B, and a decrease in NR2A-to- NR2B ratio in the temporal cortex, but not in the hippocampus, suggesting changes in NMDA receptor composition. These results suggest that in utero exposure to fluoxetine induces detrimental effects on non-hippocampal memory and in remote retention of hippocampal-dependent memory, which is believed to be stored in the temporal cortex, possibly due to changes in cortical NMDA receptor subunit stoichiometry. The present results warrant the need for studies on potential remote memory deficits in human offspring exposed to fluoxetine in utero.


Asunto(s)
Antidepresivos de Segunda Generación/toxicidad , Fluoxetina/toxicidad , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/psicología , Animales , Ansiedad/inducido químicamente , Ansiedad/psicología , Depresión/inducido químicamente , Depresión/psicología , Femenino , Preferencias Alimentarias , Suspensión Trasera , Discapacidades para el Aprendizaje/inducido químicamente , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Embarazo , Desempeño Psicomotor/efectos de los fármacos , Ratas , Reconocimiento en Psicología/efectos de los fármacos
14.
Front Pharmacol ; 12: 613105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746753

RESUMEN

Interleukin-1ß (IL-1ß) is an important cytokine that modulates peripheral and central pain sensitization at the spinal level. Among its effects, it increases spinal cord excitability by reducing inhibitory Glycinergic and GABAergic neurotransmission. In the brain, IL-1ß is released by glial cells in regions associated with pain processing during neuropathic pain. It also has important roles in neuroinflammation and in regulating NMDA receptor activity required for learning and memory. The modulation of glycine-mediated inhibitory activity via IL-1ß may play a critical role in the perception of different levels of pain. The central nucleus of the amygdala (CeA) participates in receiving and processing pain information. Interestingly, this nucleus is enriched in the regulatory auxiliary glycine receptor (GlyR) ß subunit (ßGlyR); however, no studies have evaluated the effect of IL-1ß on glycinergic neurotransmission in the brain. Hence, we hypothesized that IL-1ß may modulate GlyR-mediated inhibitory activity via interactions with the ßGlyR subunit. Our results show that the application of IL-1ß (10 ng/ml) to CeA brain slices has a biphasic effect; transiently increases and then reduces sIPSC amplitude of CeA glycinergic currents. Additionally, we performed molecular docking, site-directed mutagenesis, and whole-cell voltage-clamp electrophysiological experiments in HEK cells transfected with GlyRs containing different GlyR subunits. These data indicate that IL-1ß modulates GlyR activity by establishing hydrogen bonds with at least one key amino acid residue located in the back of the loop C at the ECD domain of the ßGlyR subunit. The present results suggest that IL-1ß in the CeA controls glycinergic neurotransmission, possibly via interactions with the ßGlyR subunit. This effect could be relevant for understanding how IL-1ß released by glia modulates central processing of pain, learning and memory, and is involved in neuroinflammation.

15.
Front Pharmacol ; 11: 1040, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760273

RESUMEN

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a member of the family of Transient Receptor Potential (TRP) channels that acts as a molecular detector of noxious signals in primary sensory neurons. Activated by capsaicin, heat, voltage and protons, it is also well known for its desensitization, which led to the medical use of topically applied TRPV1 agonist capsaicin for its long-lasting analgesic effects. Here we report three novel small molecules, which were identified using a Structure-Based Virtual Screening for TRPV1 from the ZINC database. The three compounds were tested using electrophysiological assays, which confirmed their capsaicin-like agonist activity. von Frey filaments were used to measure the analgesic effects of the compounds applied topically on tactile allodynia induced by intra-plantar carrageenan. All compounds had anti-nociceptive activity, but two of them showed faster and longer lasting analgesic effects than capsaicin. The present results suggest that TRPV1 agonists different from capsaicin could be used to develop topical analgesics with faster onset and more potent effects.

16.
Artículo en Inglés | MEDLINE | ID: mdl-32244060

RESUMEN

Hemichannels formed by connexins mediate the exchange of ions and signaling molecules between the cytoplasm and the extracellular milieu. Under physiological conditions hemichannels have a low open probability, but in certain pathologies their open probability increases, which can result in cell damage. Pathological conditions are characterized by the production of a number of proinflammatory molecules, including 4-hydroxynonenal (4-HNE), one of the most common lipid peroxides produced in response to inflammation and oxidative stress. The aim of this work was to evaluate whether 4-HNE modulates the activity of Cx46 hemichannels. We found that 4-HNE (100 µM) reduced the rate of 4',6-diamino-2-fenilindol (DAPI) uptake through hemichannels formed by recombinant human Cx46 fused to green fluorescent protein, an inhibition that was reversed partially by 10 mM dithiothreitol. Immunoblot analysis showed that the recombinant Cx46 expressed in HeLa cells becomes carbonylated after exposure to 4-HNE, and that 10 mM dithiothreitol reduced its carbonylation. We also found that Cx46 was carbonylated by 4-HNE in the lens of a selenite-induced cataract animal model. The exposure to 100 µM 4-HNE decreased hemichannel currents formed by recombinant rat Cx46 in Xenopus laevis oocytes. This inhibition also occurred in a mutant expressing only the extracellular loop cysteines, suggesting that other Cys are not responsible for the hemichannel inhibition by carbonylation. This work demonstrates for the first time that Cx46 is post-translationally modified by a lipid peroxide and that this modification reduces Cx46 hemichannel activity.


Asunto(s)
Aldehídos/farmacología , Conexinas/antagonistas & inhibidores , Carbonilación Proteica/efectos de los fármacos , Animales , Conexinas/metabolismo , Células HeLa , Humanos , Ratas , Ratas Sprague-Dawley , Xenopus laevis
17.
J ECT ; 35(4): e46-e54, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31764455

RESUMEN

BACKGROUND: Negative symptoms of schizophrenia show limited response to both typical and atypical antipsychotics. Repetitive transcranial magnetic stimulation applied over the prefrontal cortex (PFC) has been proposed as an adjuvant to pharmacological treatment of negative symptoms in schizophrenia, but whether the improvements obtained are specific to negative symptoms or attributable to antidepressant effects is still unclear. OBJECTIVE: The aim of the present study is to determine to which extent the improvements in negative symptoms of schizophrenia obtained after high-frequency stimulation of the bilateral PFC using deep TMS (dTMS) are attributable to antidepressant effects. METHODS: Repetitive dTMS was administered to the PFC in a cohort of 16 patients with schizophrenia under successful pharmacological control of positive symptoms and predominant negative symptoms. Patients were treated using high-frequency (18 Hz) bilateral stimulation applied over the lateral PFC bilaterally using Brainsway H-2 coil. The effects of dTMS on negative symptoms were measured using the Scale for the Assessment of Negative Symptoms and the Positive and Negative Syndrome Scales. We then compared the improvements in negative symptoms obtained in patients showing depressive symptoms (≥7 points) with those found in patients without depression (>7 points), as determined by the Calgary Scale for Depression. RESULTS: Repetitive dTMS treatment induced significant improvements in negative symptoms as assessed using both Scale for the Assessment of Negative Symptoms and Positive and Negative Syndrome Scales. Comparison of the improvements obtained in patients with or without depression at the beginning of treatment revealed similar improvements in negative symptoms, irrespective of subjacent depression. CONCLUSIONS: Our data suggest that the beneficial effects of high frequency dTMS of the PFC cannot be attributed solely to its antidepressant effects.


Asunto(s)
Depresión/terapia , Esquizofrenia/terapia , Estimulación Magnética Transcraneal , Adulto , Chile , Femenino , Humanos , Masculino , Corteza Prefrontal , Estudios Retrospectivos , Esquizofrenia/tratamiento farmacológico
18.
Front Physiol ; 10: 330, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984021

RESUMEN

The human insula has been consistently reported to be overactivated in all anxiety disorders, activation which has been suggested to be proportional to the level of anxiety and shown to decrease with effective anxiolytic treatment. Nonetheless, studies evaluating the direct role of the insula in anxiety are lacking. Here, we set out to investigate the role of the rodent insula in anxiety by either inactivating different insular regions via microinjections of glutamatergic AMPA receptor antagonist CNQX or activating them by microinjection of GABA receptor antagonist bicuculline in rats, before measuring anxiety-like behavior using the elevated plus maze. Inactivation of caudal and medial insular regions induced anxiogenic effects, while their activation induced anxiolytic effects. In contrast, inactivation of more rostral areas induced anxiolytic effects and their activation, anxiogenic effects. These results suggest that the insula in the rat has a role in the modulation of anxiety-like behavior in rats, showing regional differences; rostral regions have an anxiogenic role, while medial and caudal regions have an anxiolytic role, with a transition area around bregma +0.5. The present study suggests that the insula has a direct role in anxiety.

19.
Nitric Oxide ; 86: 54-62, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30797972

RESUMEN

Under normal conditions, connexin (Cx) hemichannels have a low open probability, which can increase under pathological conditions. Since hemichannels are permeable to relatively large molecules, their exacerbated activity has been linked to cell damage. Cx46 is highly expressed in the lens and its mutations have been associated to cataract formation, but it is unknown whether Cx46 has a role in non-genetic cataract formation (i.e. aging and diabetes). Nitric oxide (NO) is a key element in non-genetic cataract formation and Cx46 hemichannels have been shown to be sensitive to NO. The molecular mechanisms of the effects of NO on Cx46 are unknown, but are likely to result from Cx46 S-nitrosation (also known as S-nitrosylation). In this work, we found that lens opacity was correlated with Cx46 S-nitrosation in an animal model of cataract. Consistent with this result, a NO donor increased Cx46 S-nitrosation and hemichannel opening in HLE-B3 cells (cell line derived from human lens epithelial cells). Mutagenesis studies point to the cysteine located in the fourth transmembrane helix (TM4; human C212, rat C218) as the NO sensor. Electrophysiological studies performed in Xenopus oocytes revealed that rat Cx46 hemichannels are sensitive to different NO donors, and that the presence of C218 is necessary to observe the NO donors' effects. Unexpectedly, gap junctions formed by Cx46 were insensitive to NO or the reducing agent dithiothreitol. We propose that increased hemichannel opening and/or changes in their electrophysiological properties of human Cx46 due to S-nitrosation of the cysteine in TM4 could be an important factor in cataract formation.


Asunto(s)
Catarata/etiología , Conexinas/metabolismo , Cisteína/química , Óxido Nítrico/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Conexinas/química , Cricetulus , Uniones Comunicantes/metabolismo , Humanos , Masculino , Potenciales de la Membrana/fisiología , Mesocricetus , Ratones , Nitrosación , Conformación Proteica en Hélice alfa , Procesamiento Proteico-Postraduccional , Ratas Sprague-Dawley , Alineación de Secuencia , Xenopus laevis , Pez Cebra
20.
J Cell Biochem ; 119(5): 3922-3935, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29219199

RESUMEN

The purinergic receptor P2X3 (P2X3-R) plays important roles in molecular pathways of pain, and reduction of its activity or expression effectively reduces chronic inflammatory and neuropathic pain sensation. Inflammation, nerve injury, and cancer-induced pain can increase P2X3-R mRNA and/or protein levels in dorsal root ganglia (DRG). However, P2X3-R expression is unaltered or even reduced in other pain studies. The reasons for these discrepancies are unknown and might depend on the applied traumatic intervention or on intrinsic factors such as age, gender, genetic background, and/or epigenetics. In this study, we sought to get insights into the molecular mechanisms responsible for inflammatory hyperalgesia by determining P2X3-R expression in DRG neurons of juvenile male rats that received a Complete Freund's Adjuvant (CFA) bilateral paw injection. We demonstrate that all CFA-treated rats showed inflammatory hyperalgesia, however, only a fraction (14-20%) displayed increased P2X3-R mRNA levels, reproducible across both sides. Immunostaining assays did not reveal significant increases in the percentage of P2X3-positive neurons, indicating that increased P2X3-R at DRG somas is not critical for inducing inflammatory hyperalgesia in CFA-treated rats. Chromatin immunoprecipitation (ChIP) assays showed a correlated (R2 = 0.671) enrichment of the transcription factor Runx1 and the epigenetic active mark histone H3 acetylation (H3Ac) at the P2X3-R gene promoter in a fraction of the CFA-treated rats. These results suggest that animal-specific increases in P2X3-R mRNA levels are likely associated with the genetic/epigenetic context of the P2X3-R locus that controls P2X3-R gene transcription by recruiting Runx1 and epigenetic co-regulators that mediate histone acetylation.


Asunto(s)
Adyuvante de Freund/efectos adversos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Receptores Purinérgicos P2X3/biosíntesis , Transcripción Genética/efectos de los fármacos , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Adyuvante de Freund/farmacología , Ganglios Espinales/patología , Hiperalgesia/patología , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA