Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Int J Food Microbiol ; 420: 110765, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38838541

RESUMEN

Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.


Asunto(s)
Verduras , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Verduras/microbiología , Inocuidad de los Alimentos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Secuenciación Completa del Genoma , Humanos
4.
J Sci Food Agric ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651793

RESUMEN

BACKGROUND: Klebsiella pneumoniae species complex (KpSC) is an important disseminator of carbapenemase-encoding genes, mainly blaKPC-2 and blaNDM-1, from hospitals to the environment. Consequently, carbapenem-resistant strains can be spread through the agrifood system, raising concerns about food safety. This study therefore aimed to isolate carbapenem-resistant KpSC strains from the agricultural and environmental sectors and characterize them using phenotypic, molecular, and genomic analyses. RESULTS: Klebsiella pneumoniae and Klebsiella quasipneumoniae strains isolated from soils used for lemon, guava, and fig cultivation, and from surface waters, displayed an extensive drug-resistance profile and carried blaKPC-2, blaNDM-1, or both. In addition to carbapenemase-encoding genes, KpSC strains harbor a broad resistome (antimicrobial resistance and metal tolerance) and present putative hypervirulence. Soil-derived K. pneumoniae strains were assigned as high-risk clones (ST11 and ST307) and harbored the blaKPC-2 gene associated with Tn4401b and Tn3-like elements on IncN-pST15 and IncX5 plasmids. In surface waters, the coexistence of blaKPC-2 and blaNDM-1 genes was identified in K. pneumoniae ST6326, a new carbapenem-resistant regional Brazilian clone. In this case, blaKPC-2 with Tn4401a isoform and blaNDM-1 associated with a Tn125-like transposon were located on different plasmids. Klebsiella quasipneumoniae ST526 also presented the blaNDM-1 gene associated with a Tn3000 transposon on an IncX3 plasmid. CONCLUSION: These findings provide a warning regarding the transmission of carbapenemase-positive KpSC across the agricultural and environmental sectors, raising critical food safety and environmental issues. © 2024 Society of Chemical Industry.

5.
World J Microbiol Biotechnol ; 40(6): 177, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656467

RESUMEN

During the COVID-19 pandemic, the occurrence of carbapenem-resistant Klebsiella pneumoniae increased in human clinical settings worldwide. Impacted by this increase, international high-risk clones harboring carbapenemase-encoding genes have been circulating in different sources, including the environment. The blaKPC gene is the most commonly disseminated carbapenemase-encoding gene worldwide, whose transmission is carried out by different mobile genetic elements. In this study, blaKPC-2-positive Klebsiella pneumoniae complex strains were isolated from different anthropogenically affected aquatic ecosystems and characterized using phenotypic, molecular, and genomic methods. K. pneumoniae complex strains exhibited multidrug-resistant and extensively drug-resistant profiles, spotlighting the resistance to carbapenems, ceftazidime-avibactam, colistin, and tigecycline, which are recognized as last-line antimicrobial treatment options. Molecular analysis showed the presence of several antimicrobial resistance, virulence, and metal tolerance genes. In-depth analysis showed that the blaKPC-2 gene was associated with three different Tn4401 isoforms (i.e., Tn4401a, Tn4401b, and Tn4401i) and NTEKPC elements. Different plasmid replicons were detected and a conjugative IncN-pST15 plasmid harboring the blaKPC-2 gene associated with Tn4401i was highlighted. K. pneumoniae complex strains belonging to international high-risk (e.g., ST11 and ST340) and unusual clones (e.g., ST323, ST526, and ST4216) previously linked to clinical settings. In this context, some clones were reported for the first time in the environmental sector. Therefore, these findings evidence the occurrence of carbapenemase-producing K. pneumoniae complex strains in aquatic ecosystems and contribute to the monitoring of carbapenem resistance worldwide.


Asunto(s)
Antibacterianos , Variación Genética , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Plásmidos , beta-Lactamasas , Humanos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Ecosistema , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Plásmidos/genética , Microbiología del Agua
7.
Environ Pollut ; 348: 123849, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522607

RESUMEN

Urban streams that receive untreated domestic and hospital waste can transmit infectious diseases and spread drug residues, including antimicrobials, which can then increase the selection of antimicrobial-resistant bacteria. Here, water samples were collected from three different urban streams in the state of São Paulo, Brazil, to relate their range of Water Quality Indices (WQIs) to the diversity and composition of aquatic microbial taxa, virulence genes (virulome), and antimicrobial resistance determinants (resistome), all assessed using untargeted metagenome sequencing. There was a predominance of phyla Proteobacteria, Actinobacteria, and Bacteroidetes in all samples, and Pseudomonas was the most abundant detected genus. Virulence genes associated with motility, adherence, and secretion systems were highly abundant and mainly associated with Pseudomonas aeruginosa. Furthermore, some opportunistic pathogenic genera had negative correlations with WQI. Many clinically relevant antimicrobial resistance genes (ARGs) and efflux pump-encoding genes that confer resistance to critically important antimicrobials were detected. The highest relative abundances of ARGs were ß-lactams and macrolide-lincosamide-streptogramin. No statistically supported relationship was detected between the abundance of virulome/resistome and collection type/WQI. On the other hand, total solids were a weak predictor of gene abundance patterns. These results provide insights into various microbial outcomes given urban stream quality and point to its ecological complexity. In addition, this study suggests potential consequences for human health as mediated by aquatic microbial communities responding to typical urban outputs.


Asunto(s)
Ríos , Calidad del Agua , Humanos , Brasil , Antibacterianos/farmacología , Antibacterianos/análisis , Bacterias/genética , Genes Bacterianos
9.
World J Microbiol Biotechnol ; 40(2): 63, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190002

RESUMEN

Acinetobacter bereziniae has recently gained medical notoriety due to its emergence as a multidrug resistance and healthcare-associated pathogen. In this study, we report the whole-genome characterization of an A. bereziniae strain (A321) recovered from an infected semiaquatic turtle, as well as a comparative analysis of A. bereziniae strains circulating at the human-animal-environment interface. Strain A321 displayed a multidrug resistance profile to medically important antimicrobials, which was supported by a wide resistome. The novel Tn5393m transposon and a qnrB19-bearing ColE1-like plasmid were identified in A321 strain. Novel OXA-229-like ß-lactamases were detected and expression of OXA-931 demonstrated a 2-64-fold increase in the minimum inhibitory concentration for ß-lactam agents. Comparative genomic analysis revealed that most A. bereziniae strains did not carry any antimicrobial resistance genes (ARGs); however, some strains from China, Brazil, and India harbored six or more ARGs. Furthermore, A. bereziniae strains harbored conserved virulence genes. These results add valuable information regarding the spread of ARGs and mobile genetic elements that could be shared not only between A. bereziniae but also by other bacteria of clinical interest. This study also demonstrates that A. bereziniae can spill over from anthropogenic sources into natural environments and subsequently be transmitted to non-human hosts, making this a potential One Health bacteria that require close surveillance.


Asunto(s)
Acinetobacter , Salud Única , Animales , Genómica , Acinetobacter/genética , Brasil
11.
Pathogens ; 12(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003800

RESUMEN

Pluralibacter gergoviae is a member of the Enterobacteriaceae family that has been reported sporadically. Although P. gergoviae strains exhibiting multidrug-resistant profiles have been identified an in-depth genomic analysis focusing on antimicrobial resistance (AMR) has been lacking, and was therefore performed in this study. Forty-eight P. gergoviae strains, isolated from humans, animals, foods, and the environment during 1970-2023, were analyzed. A large number of single-nucleotide polymorphisms were found, indicating a highly diverse population. Whilst P. gergoviae strains were found to be circulating at the One Health interface, only human and environmental strains exhibited multidrug resistance genotypes. Sixty-one different antimicrobial resistance genes (ARGs) were identified, highlighting genes encoding mobile colistin resistance, carbapenemases, and extended-spectrum ß-lactamases. Worryingly, the co-occurrence of mcr-9.1, blaKPC-2, blaCTX-M-9, and blaSHV-12, as well as mcr-10.1, blaNDM-5, and blaSHV-7, was detected. Plasmid sequences were identified as carrying clinically important ARGs, evidencing IncX3 plasmids harboring blaKPC-2, blaNDM-5, or blaSHV-12 genes. Virulence genotyping underlined P. gergoviae as being a low-virulence species. In this regard, P. gergoviae is emerging as a new multidrug-resistant species belonging to the Enterobacteriaceae family. Therefore, continuous epidemiological genomic surveillance of P. gergoviae is required.

12.
Integr Zool ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37984552

RESUMEN

Enterobacterales and Pseudomonas aeruginosa have been colonizing or infecting wild hosts and antimicrobial-resistant strains are present in mammals and birds. Furthermore, international high-risk clones of multidrug-resistant Escherichia coli are identified and the implications of multidrug-resistant Gram-negative bacteria in zoo animals are discussed.

13.
Environ Sci Pollut Res Int ; 30(53): 114678-114684, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37845596

RESUMEN

The environmental contamination plays a significant role in the emergence of antimicrobial resistance. In this study, we report a genomic analysis of an extensively drug-resistant and blaNDM-1-producing Klebsiella pneumoniae (EW807) strain recovered from a surface water sample. Strain EW807 belonged to sequence type (ST) 340 and serotype O4:KL15, a high-risk clone of the clonal group 258. This strain carried a broad resistome, including blaNDM-1 and blaCTX-M-15. The core genome multilocus sequence typing phylogenetic analysis revealed that the EW807 strain was most related to strains from Brazil and the USA. An IncX3 plasmid was identified harboring the blaNDM-1 gene, while an IncFIB(K) plasmid was detected carrying the blaCTX-M-15 in addition to multidrug resistance and multimetal tolerance regions. IncX3 and IncFIB(K) plasmids shared high similarity with plasmids from a human in China and a dog in Brazil, respectively. The regions harboring the blaNDM-1 and blaCTX-M-15 genes contained sequences from the Tn3 family. These findings suggest that IncX3 plasmid could play a role in the spread of NDM-1 in a post-pandemic scenario. To the best of our knowledge, this is the first report of blaNDM-1-producing K. pneumoniae ST340 O4:KL15 strain in the environment. Therefore, the presence of high-risk clones of K. pneumoniae carrying carbapenemases in the environment requires strict surveillance.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Klebsiella pneumoniae , Ríos , Animales , Perros , Humanos , Antibacterianos/farmacología , beta-Lactamasas/genética , Genómica , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Filogenia , Plásmidos , Ríos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética
16.
Microb Drug Resist ; 29(10): 492-496, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37428613

RESUMEN

A Klebsiella quasipneumoniae subsp. similipneumoniae strain, named S915, belonging to the ST1859 O5:KL35, and harboring the plasmid-mediated quinolone resistance qnrE1 gene, was isolated from a soil sample cultivated with lettuce in Brazil. The core genome multilocus sequence typing analysis revealed that S915 strain was most related to a clinical strain of Brazil. Comparative genomic analysis showed that ST1859 O5:KL35 strains have been circulating in clinical settings and are closely related to multidrug resistance and multimetal tolerance. Strain S915 presented a plasmid contig co-harboring the qnrE1 gene and tellurite tolerance operon. The region harboring the qnrE1 gene (ISEcp1-qnrE1-araJ-ahp) shared high similarity with others from infected humans, ready-to-eat dish, and food-producing animals in Brazil. This is the first report of the plasmid-mediated qnrE1 gene in the environment. Our findings evidence the initial dissemination of the qnrE1 gene in the environment by the introduction of a clinical strain, which may be spread to different sectors, representing a One Health challenge.

18.
Braz J Microbiol ; 54(3): 1915-1921, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37328679

RESUMEN

Tigecycline (TGC) is an important antimicrobial agent used as a last resort for difficult-to-treat infections mainly caused by carbapenem-resistant Enterobacteriaceae, but TGC-resistant strains are emerging, raising concerns. In this study, 33 whole-genome characterized multidrug-resistant (MDR) strains (Klebsiella species and Escherichia coli) positive mainly to mcr-1, bla, and/or qnr from the environment were investigated for TGC susceptibility and mutations in TGC resistance determinants, predicting a genotype-phenotype relationship. TGC minimum inhibitory concentrations (MICs) of Klebsiella species and E. coli ranged from 0.25 to 8 and 0.125 to 0.5 mg/L, respectively. In this context, KPC-2-producing Klebsiella pneumoniae ST11 and Klebsiella quasipneumoniae subsp. quasipneumoniae ST4417 strains were resistant to TGC, while some E. coli strains of ST10 clonal complex positive for mcr-1 and/or blaCTX-M exhibited reduced susceptibility to this antimicrobial. Overall, neutral and deleterious mutations were shared among TGC-susceptible and TGC-resistant strains. A new frameshift mutation (Q16stop) in RamR was found in a K. quasipneumoniae strain and was associated with TGC resistance. Deleterious mutations in OqxR were identified in Klebsiella species and appear to be associated with decreased susceptibility to TGC. All E. coli strains were determined as susceptible, but multiple point mutations were identified, highlighting deleterious mutations in ErmY, WaaQ, EptB, and RfaE in strains exhibiting decreased susceptibility to TGC. These findings demonstrate that resistance to TGC is not widespread in environmental MDR strains and provide genomic insights about resistance and decreased susceptibility to TGC. From a One Health perspective, the monitoring of TGC susceptibility should be constant, improving the genotype-phenotype relationship and genetic basis.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Tigeciclina/farmacología , Escherichia coli/genética , Antibacterianos/farmacología , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Infecciones por Klebsiella/microbiología
19.
Chemosphere ; 335: 139073, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37263512

RESUMEN

Pseudomonas aeruginosa can produce pigments, which mediate external electron transfer (EET). Depending on the mediator, this species can be explored in bioelectrosystems to harvest energy or to obtain chemicals from residual organic compounds. This study has compared the performance of microbial fuel cells (MFCs) inoculated with a Pseudomonas aeruginosa isolate, namely EW603 or EW819, which produce pyocyanin and pyoverdine, respectively. The efficiency of these MFCs in glycerol, a typical residue of biodiesel production, were also compared. The MFCs exhibited different performances. The maximum voltage was 411 and 281 mV m2, the power density was 40.1 and 21.3 mW m-2, and the coulombic efficiency was 5.16 and 1.49% for MFC-EW603 and MFC-EW819, respectively. MFC-EW603 and MFC-EW819 achieved maximum current at 560 and 2200 Ω, at 141.2 and 91.3 mA m-2, respectively. When the system was operated at the respective maximum current output, MFC-EW603 consumed the total glycerol content (11 mmol L-1), and no products could be detected after 50 h. In turn, acetic and butyric acids were detected at the end of MFC-EW819 operation (75 h). The results suggested that P. aeruginosa metabolism can be steered in the MFC to generate current or microbial products depending on the pigment-producing strain and the conditions applied to the system, such as the external resistance. In addition, gene cluster pathways related to phenazine production (phzA and phzB) and other electrogenic-related genes (mexGHI-opmB) were identified in the strain genomes, supporting the findings. These results open new possibilities for using glycerol in bioelectrochemical systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Piocianina/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas , Glicerol/metabolismo , Electrodos , Electricidad
20.
Environ Monit Assess ; 195(6): 713, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37221353

RESUMEN

Pseudomonas aeruginosa can harbor several virulence and antimicrobial resistance genes (ARGs). In this regard, virulent and multidrug-resistant (MDR) P. aeruginosa strains are closely related to severe infections. In addition, this species can also carry metal tolerance genes, selecting mainly antimicrobial-resistant strains. The action of several pollutants on the environment may favor the occurrence of antimicrobial-resistant and metal-tolerant strains. Therefore, the aim of this study was to characterize potentially pathogenic, antimicrobial-resistant, and/or metal-tolerant P. aeruginosa isolates from different environmental samples (waters, soils, sediments, or sands) and to perform a whole-genome sequence-based analysis of a rare clone from residual water. Environmental isolates carried virulence genes related to adherence, invasion, and toxin production, and 79% of the isolates harbored at least five virulence genes. In addition, the isolates were resistant to different antimicrobials, including important antipseudomonal agents, and 51% of them were classified as MDR, but only ARGs associated with aminoglycoside resistance were found. Furthermore, some isolates were tolerant mainly to copper, cadmium, and zinc, and presented metal tolerance genes related to these compounds. Whole-genome characterization of an isolate with unique phenotype with simultaneous resistance to antimicrobials and metals showed nonsynonymous mutations in different antimicrobial resistance determinants and revealed a classification of O6/ST900 clone as rare, potentially pathogenic, and predisposed to acquire multidrug resistance genes. Therefore, these results draw attention to the dissemination of potentially pathogenic, antimicrobial-resistant, and metal-tolerant P. aeruginosa isolates in environmental niches, alerting to a potential risk mainly to human health.


Asunto(s)
Antibacterianos , Pseudomonas aeruginosa , Humanos , Farmacorresistencia Bacteriana , Monitoreo del Ambiente , Genómica , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...