Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 263: 116626, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116633

RESUMEN

In the past, vast research has been conducted on biosensors and point-of-care (PoC) diagnostics. Despite rapid advances especially during the SARS-CoV-2 pandemic in this research field a low-cost molecular biosensor exhibiting the user-friendliness of a rapid antigen test, and also the sensitivity and specificity of a PCR test, has not been developed yet. To this end we developed a novel microfluidics based and handheld PoC device, that facilitates viral detection at PCR sensitivity and specificity in less than 40 min, including 15 min sample preparation. This was attained by incorporation of pulse controlled amplification (PCA), a method which uses short electrical pulses to rapidly increase the temperature of a small fraction of the sample volume. In this work, we present a low-cost PCA device with a microfluidic consumable intended for the use in a decentralized or home-setting. We used finite element analysis (FEA) simulations to display the fundamental principle and highlight the critical parameter dependency of PCA, such as pulse length and resistor shape. Furthermore, we integrated a simple and fast workflow for sample preparation and evaluated the limit of detection (LoD) for SARS-CoV-2 viral RNA, which is 0.88 copies/µL (=44 copies/reaction), and thus, comparable to conventional RT-qPCR. Additionally, target specificity of the device was validated. Our device and PCA approach enables cost-effective, rapid and mobile molecular diagnostics while remaining highly sensitive and specific.


Asunto(s)
Técnicas Biosensibles , COVID-19 , SARS-CoV-2 , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Humanos , COVID-19/diagnóstico , COVID-19/virología , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Prueba de Ácido Nucleico para COVID-19/instrumentación , Prueba de Ácido Nucleico para COVID-19/métodos , Dispositivos Laboratorio en un Chip , Sistemas de Atención de Punto , Límite de Detección , Sensibilidad y Especificidad , ARN Viral/análisis , ARN Viral/aislamiento & purificación
2.
PLoS Negl Trop Dis ; 15(1): e0009114, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513140

RESUMEN

BACKGROUND: Molecular diagnostics has become essential in the identification of many infectious and neglected diseases, and the detection of nucleic acids often serves as the gold standard technique for most infectious agents. However, established techniques like polymerase chain reaction (PCR) are time-consuming laboratory-bound techniques while rapid tests such as Lateral Flow Immunochromatographic tests often lack the required sensitivity and/or specificity. METHODS/PRINCIPLE FINDINGS: Here we present an affordable, highly mobile alternative method for the rapid identification of infectious agents using pulse-controlled amplification (PCA). PCA is a next generation nucleic acid amplification technology that uses rapid energy pulses to heat microcyclers (micro-scale metal heating elements embedded directly in the amplification reaction) for a few microseconds, thus only heating a small fraction of the reaction volume. The heated microcyclers cool off nearly instantaneously, resulting in ultra-fast heating and cooling cycles during which classic amplification of a target sequence takes place. This reduces the overall amplification time by a factor of up to 10, enabling a sample-to-result workflow in just 15 minutes, while running on a small and portable prototype device. In this proof of principle study, we designed a PCA-assay for the detection of Yersinia pestis to demonstrate the efficacy of this technology. The observed detection limits were 434 copies per reaction (purified DNA) and 35 cells per reaction (crude sample) respectively of Yersinia pestis. CONCLUSIONS/SIGNIFICANCE: PCA offers fast and decentralized molecular diagnostics and is applicable whenever rapid, on-site detection of infectious agents is needed, even under resource limited conditions. It combines the sensitivity and specificity of PCR with the rapidness and simplicity of hitherto existing rapid tests.


Asunto(s)
Patología Molecular/métodos , Peste/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Yersinia pestis/genética , Yersinia pestis/aislamiento & purificación , Cartilla de ADN , Diseño de Equipo , Genes Bacterianos/genética , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Patología Molecular/instrumentación , Reacción en Cadena de la Polimerasa/instrumentación , Sensibilidad y Especificidad
3.
Nano Lett ; 13(7): 3140-4, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23777471

RESUMEN

We report on the tuning of specific binding of DNA attached to gold nanoparticles at the individual particle pair (dimer) level in an optical trap by means of plasmonic heating. DNA hybridization events are detected optically by the change in the plasmon resonance frequency due to plasmonic coupling of the nanoparticles. We find that at larger trapping powers (i.e., larger temperatures and stiffer traps) the hybridization rates decrease by more than an order of magnitude. This result is explained by higher temperatures preventing the formation of dimers with lower binding energies. Our results demonstrate that plasmonic heating can be used to fine tune the kinetics of biomolecular binding events.


Asunto(s)
Materiales Biocompatibles Revestidos/síntesis química , ADN/química , Oro/química , Calefacción/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Resonancia por Plasmón de Superficie/métodos , Sitios de Unión , Materiales Biocompatibles Revestidos/efectos de la radiación , ADN/efectos de la radiación , Transferencia de Energía , Oro/efectos de la radiación , Cinética , Luz , Ensayo de Materiales , Nanopartículas del Metal/efectos de la radiación
4.
Nano Lett ; 8(2): 619-23, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18220441

RESUMEN

In traditional DNA melting assays, the temperature of the DNA-containing solution is slowly ramped up. In contrast, we use 300 ns laser pulses to rapidly heat DNA bound gold nanoparticle aggregates. We show that double-stranded DNA melts on a microsecond time scale that leads to a disintegration of the gold nanoparticle aggregates on a millisecond time scale. A perfectly matching and a point-mutated DNA sequence can be clearly distinguished in less than one millisecond even in a 1:1 mixture of both targets.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , ADN/genética , Oro/química , Nanoestructuras/química , Nanotecnología/métodos , Análisis de Secuencia de ADN/métodos , Cristalización/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...