Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1177, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300233

RESUMEN

Initiatives to protect 30% of Earth by 2030 prompt evaluation of how to efficiently target shortcomings in the global protected area (PA) network. Focusing on amphibians, the most vulnerable vertebrate class, we illustrate the conservation value of microreserves, a term we employ here to refer to reserves of <10 km2. We report that the network continues to under-represent threatened amphibians and that, despite this clear shortcoming in land-based conservation, the creation of PAs protecting amphibians slowed after 2010. By proving something previously assumed-that amphibians generally have smaller ranges than other terrestrial vertebrates-we demonstrate that microreserves could protect a substantial portion of many amphibian ranges, particularly threatened species. We find existing microreserves are capable of hosting an amphibian species richness similar to PAs 1000-10,00X larger, and we show that amphibians' high beta diversity means that microreserves added to a growing PA network cover amphibian species 1.5-6x faster than larger size categories. We propose that stemming global biodiversity loss requires that we seriously consider the conservation potential of microreserves, using them to capture small-range endemics that may otherwise be omitted from the PA network entirely.


Asunto(s)
Anfibios , Biodiversidad , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Animales , Anfibios/crecimiento & desarrollo , Anfibios/fisiología , Conservación de los Recursos Naturales/métodos
2.
J Hered ; 114(4): 395-403, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37042574

RESUMEN

Climate-driven changes in hydrological regimes are of global importance and are particularly significant in riparian ecosystems. Riparian ecosystems in California provide refuge to many native and vulnerable species within a xeric landscape. California Tetragnatha spiders play a key role in riparian ecosystems, serving as a link between terrestrial and aquatic elements. Their tight reliance on water paired with the widespread distributions of many species make them ideal candidates to better understand the relative role of waterways versus geographic distance in shaping the population structure of riparian species. To assist in better understanding population structure, we constructed a reference genome assembly for Tetragnatha versicolor using long-read sequencing, scaffolded with proximity ligation Omni-C data. The near-chromosome-level assembly is comprised of 174 scaffolds spanning 1.06 Gb pairs, with a scaffold N50 of 64.1 Mb pairs and BUSCO completeness of 97.6%. This reference genome will facilitate future study of T. versicolor population structure associated with the rapidly changing environment of California.


Asunto(s)
Ecosistema , Arañas , Animales , Genoma , Arañas/química , Arañas/genética
3.
Bioscience ; 72(10): 988-998, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36196221

RESUMEN

Having a central scientific language remains crucial for advancing and globally sharing science. Nevertheless, maintaining one dominant language also creates barriers to accessing scientific careers and knowledge. From an interdisciplinary perspective, we describe how, when, and why to make scientific literature more readily available in multiple languages through the practice of translation. We broadly review the advantages and limitations of neural machine translation systems and propose that translation can serve as both a short- and a long-term solution for making science more resilient, accessible, globally representative, and impactful beyond the academy. We outline actions that individuals and institutions can take to support multilingual science and scientists, including structural changes that encourage and value translating scientific literature. In the long term, improvements to machine translation technologies and collective efforts to change academic norms can transform a monolingual scientific hub into a multilingual scientific network. Translations are available in the supplemental material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...