Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Sci Transl Med ; 15(706): eadd1014, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37494470

RESUMEN

Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner. ChRERα consists of the prototypical excitatory opsin channelrhodopsin-2 (ChR2) and the ligand-binding domain (LBD) of the human estrogen receptor α (ERα). ChRERα showed conserved ChR2 functionality and high affinity for [18F]16α-fluoroestradiol (FES), an FDA-approved PET radiopharmaceutical. Experiments in rats demonstrated that adeno-associated virus (AAV)-mediated expression of ChRERα enables neural circuit manipulation in vivo and that ChRERα expression could be monitored using FES-PET imaging. In vivo experiments in nonhuman primates (NHPs) confirmed that ChRERα expression could be monitored at the site of AAV injection in the primary motor cortex and in long-range neuronal terminals for up to 80 weeks. The anatomical connectivity map of the primary motor cortex identified by FES-PET imaging of ChRERα expression overlapped with a functional connectivity map identified using resting state fMRI in a separate cohort of NHPs. Overall, our results demonstrate that ChRERα expression can be mapped longitudinally in the mammalian brain using FES-PET imaging and can be used for neural circuit modulation in vivo.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Ratas , Humanos , Animales , Femenino , Receptor alfa de Estrógeno/metabolismo , Opsinas/metabolismo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Primates , Estradiol/metabolismo , Neoplasias de la Mama/metabolismo , Mamíferos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-36064187

RESUMEN

BACKGROUND: Substance use disorder is conceptualized as a neuropsychiatric disease with multifaceted phenotypic manifestations including disrupted interactions between brain networks. While the current understanding of brain network interactions is mostly based on static functional connectivity, accumulating evidence suggests that temporal dynamics of these network interactions may better reflect brain function and disease-related dysfunction. We thus investigated brain dynamics in cocaine use disorder and assessed their relationship with cocaine dependence severity. METHODS: Using a time frame analytical approach on resting-state functional magnetic resonance imaging data of 54 cocaine users and 54 age- and sex-matched healthy control participants, we identified temporally recurring brain network configuration patterns, termed brain states. With Menon's triple network model as a guide, we characterized these state dynamics by quantifying their occurrence rate and transition probability. Group differences in the state dynamics and their association with cocaine dependence were assessed. RESULTS: Three recurrent brain states with spatial patterns resembling the default mode, salience, and executive control networks were identified. Compared with healthy control subjects, cocaine users showed a higher default mode state occurrence rate and higher probability of transitioning from the salience state to the default mode state, with the former being attributed to the latter. A composite state transition probability negatively correlated with cocaine dependence severity. CONCLUSIONS: Our results provide novel evidence supporting the triple network model. While confirming hyperactivity of default mode network in cocaine users, our findings indicate the failure of salience network in toggling between default mode and executive control networks in cocaine use disorder.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo
3.
Front Neuroimaging ; 2: 1138193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179200

RESUMEN

Introduction: There are growing concerns about commonly inflated effect sizes in small neuroimaging studies, yet no study has addressed recalibrating effect size estimates for small samples. To tackle this issue, we propose a hierarchical Bayesian model to adjust the magnitude of single-study effect sizes while incorporating a tailored estimation of sampling variance. Methods: We estimated the effect sizes of case-control differences on brain structural features between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis and non-dependent participants for 21 individual studies (Total cases: 903; Total controls: 996). Then, the study-specific effect sizes were modeled using a hierarchical Bayesian approach in which the parameters of the study-specific effect size distributions were sampled from a higher-order overarching distribution. The posterior distribution of the overarching and study-specific parameters was approximated using the Gibbs sampling method. Results: The results showed shrinkage of the posterior distribution of the study-specific estimates toward the overarching estimates given the original effect sizes observed in individual studies. Differences between the original effect sizes (i.e., Cohen's d) and the point estimate of the posterior distribution ranged from 0 to 0.97. The magnitude of adjustment was negatively correlated with the sample size (r = -0.27, p < 0.001) and positively correlated with empirically estimated sampling variance (r = 0.40, p < 0.001), suggesting studies with smaller samples and larger sampling variance tended to have greater adjustments. Discussion: Our findings demonstrate the utility of the hierarchical Bayesian model in recalibrating single-study effect sizes using information from similar studies. This suggests that Bayesian utilization of existing knowledge can be an effective alternative approach to improve the effect size estimation in individual studies, particularly for those with smaller samples.

4.
Proc Natl Acad Sci U S A ; 119(50): e2208867119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469769

RESUMEN

As a critical node connecting the forebrain with the midbrain, the lateral habenula (LHb) processes negative feedback in response to aversive events and plays an essential role in value-based decision-making. Compulsive drug use, a hallmark of substance use disorder, is attributed to maladaptive decision-making regarding aversive drug-use-related events and has been associated with dysregulation of various frontal-midbrain circuits. To understand the contributions of frontal-habenula-midbrain circuits in the development of drug dependence, we employed a rat model of methamphetamine self-administration (SA) in the presence of concomitant footshock, which has been proposed to model compulsive drug-taking in humans. In this longitudinal study, functional MRI data were collected at pretraining baseline, after 20 d of long-access SA phase, and after 5 d of concomitant footshock coupled with SA (punishment phase). Individual differences in response to punishment were quantified by a "compulsivity index (CI)," defined as drug infusions at the end of punishment phase, normalized by those at the end of SA phase. Functional connectivity of LHb with the frontal cortices and substantia nigra (SN) after the punishment phase was positively correlated with the CI in rats that maintained drug SA despite receiving increasing-intensity footshock. In contrast, functional connectivity of the same circuits was negatively correlated with CI in rats that significantly reduced SA. These findings suggest that individual differences in compulsive drug-taking are reflected by alterations within frontal-LHb-SN circuits after experiencing the negative consequences from SA, suggesting these circuits may serve as unique biomarkers and potential therapeutic targets for individualized treatment of addiction.


Asunto(s)
Habénula , Metanfetamina , Trastornos Relacionados con Sustancias , Humanos , Ratas , Animales , Habénula/fisiología , Estudios Longitudinales , Conducta Compulsiva , Lóbulo Frontal/diagnóstico por imagen
5.
Brain Commun ; 4(6): fcac291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440101

RESUMEN

Nicotine exposure is associated with regional changes in brain nicotinic acetylcholine receptors subtype expression patterns as a function of dose and age at the time of exposure. Moreover, nicotine dependence is associated with changes in brain circuit functional connectivity, but the relationship between such connectivity and concomitant regional distribution changes in nicotinic acetylcholine receptor subtypes following nicotine exposure is not understood. Although smoking typically begins in adolescence, developmental changes in brain circuits and nicotinic acetylcholine receptors following chronic nicotine exposure remain minimally investigated. Here, we combined in vitro nicotinic acetylcholine receptor autoradiography with resting state functional magnetic resonance imaging to measure changes in [3H]nicotine binding and α4ß2 subtype nicotinic acetylcholine receptor binding and circuit connectivity across the brain in adolescent (postnatal Day 33) and adult (postnatal Day 68) rats exposed to 6 weeks of nicotine administration (0, 1.2 and 4.8 mg/kg/day). Chronic nicotine exposure increased nicotinic acetylcholine receptor levels and induced discrete, developmental stage changes in regional nicotinic acetylcholine receptor subtype distribution. These effects were most pronounced in striatal, thalamic and cortical regions when nicotine was administered during adolescence but not in adults. Using these regional receptor changes as seeds, resting state functional magnetic resonance imaging identified dysregulations in cortico-striatal-thalamic-cortical circuits that were also dysregulated following adolescent nicotine exposure. Thus, nicotine-induced increases in cortical, striatal and thalamic nicotinic acetylcholine receptors during adolescence modifies processing and brain circuits within cortico-striatal-thalamic-cortical loops, which are known to be crucial for multisensory integration, action selection and motor output, and may alter the developmental trajectory of the adolescent brain. This unique multimodal study significantly advances our understanding of nicotine dependence and its effects on the adolescent brain.

6.
Nat Med ; 28(6): 1249-1255, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35697842

RESUMEN

Drug addiction is a public health crisis for which new treatments are urgently needed. In rare cases, regional brain damage can lead to addiction remission. These cases may be used to identify therapeutic targets for neuromodulation. We analyzed two cohorts of patients addicted to smoking at the time of focal brain damage (cohort 1 n = 67; cohort 2 n = 62). Lesion locations were mapped to a brain atlas and the brain network functionally connected to each lesion location was computed using human connectome data (n = 1,000). Associations with addiction remission were identified. Generalizability was assessed using an independent cohort of patients with focal brain damage and alcohol addiction risk scores (n = 186). Specificity was assessed through comparison to 37 other neuropsychological variables. Lesions disrupting smoking addiction occurred in many different brain locations but were characterized by a specific pattern of brain connectivity. This pattern involved positive connectivity to the dorsal cingulate, lateral prefrontal cortex, and insula and negative connectivity to the medial prefrontal and temporal cortex. This circuit was reproducible across independent lesion cohorts, associated with reduced alcohol addiction risk, and specific to addiction metrics. Hubs that best matched the connectivity profile for addiction remission were the paracingulate gyrus, left frontal operculum, and medial fronto-polar cortex. We conclude that brain lesions disrupting addiction map to a specific human brain circuit and that hubs in this circuit provide testable targets for therapeutic neuromodulation.


Asunto(s)
Alcoholismo , Lesiones Encefálicas , Conectoma , Alcoholismo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesiones Encefálicas/patología , Mapeo Encefálico , Estudios de Cohortes , Humanos , Imagen por Resonancia Magnética
7.
Neuropsychopharmacology ; 47(12): 2081-2089, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35752682

RESUMEN

Dysregulation of frontal cortical inputs to the striatum is foundational in the neural basis of substance use disorder (SUD). Neuroanatomical and electrophysiological data increasingly show that striatal nodes receive appreciable input from numerous cortical areas, and that the combinational properties of these multivariate "connectivity profiles" play a predominant role in shaping striatal activity and function. Yet, how abnormal configuration of striatal connectivity profiles might contribute to SUD is unknown. Here, we implemented a novel "connectivity profile analysis" (CPA) approach using resting-state functional connectivity data to facilitate detection of different types of connectivity profile "misconfiguration" that may reflect distinct forms of aberrant circuit plasticity in SUD. We examined 46 nicotine-dependent smokers and 33 non-smokers and showed that both dorsal striatum (DS) and ventral striatum (VS) connectivity profiles with frontal cortex were misconfigured in smokers-but in doubly distinct fashions. DS misconfigurations were stable across sated and acute abstinent states (indicative of a "trait" circuit adaptation) whereas VS misconfigurations emerged only during acute abstinence (indicative of a "state" circuit adaptation). Moreover, DS misconfigurations involved abnormal connection strength rank order arrangement, whereas VS misconfigurations involved abnormal aggregate strength. We found that caudal ventral putamen in smokers uniquely displayed multiple types of connectivity profile misconfiguration, whose interactive magnitude was linked to dependence severity, and that VS misconfiguration magnitude correlated positively with withdrawal severity during acute abstinence. Findings underscore the potential for approaches that more aptly model the neurobiological composition of corticostriatal circuits to yield deeper insights into the neural basis of SUD.


Asunto(s)
Trastornos Relacionados con Sustancias , Estriado Ventral , Mapeo Encefálico , Cuerpo Estriado/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Nicotina , Putamen , Estriado Ventral/diagnóstico por imagen
8.
Nat Protoc ; 17(3): 567-595, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121856

RESUMEN

Cue reactivity is one of the most frequently used paradigms in functional magnetic resonance imaging (fMRI) studies of substance use disorders (SUDs). Although there have been promising results elucidating the neurocognitive mechanisms of SUDs and SUD treatments, the interpretability and reproducibility of these studies is limited by incomplete reporting of participants' characteristics, task design, craving assessment, scanning preparation and analysis decisions in fMRI drug cue reactivity (FDCR) experiments. This hampers clinical translation, not least because systematic review and meta-analysis of published work are difficult. This consensus paper and Delphi study aims to outline the important methodological aspects of FDCR research, present structured recommendations for more comprehensive methods reporting and review the FDCR literature to assess the reporting of items that are deemed important. Forty-five FDCR scientists from around the world participated in this study. First, an initial checklist of items deemed important in FDCR studies was developed by several members of the Enhanced NeuroImaging Genetics through Meta-Analyses (ENIGMA) Addiction working group on the basis of a systematic review. Using a modified Delphi consensus method, all experts were asked to comment on, revise or add items to the initial checklist, and then to rate the importance of each item in subsequent rounds. The reporting status of the items in the final checklist was investigated in 108 recently published FDCR studies identified through a systematic review. By the final round, 38 items reached the consensus threshold and were classified under seven major categories: 'Participants' Characteristics', 'General fMRI Information', 'General Task Information', 'Cue Information', 'Craving Assessment Inside Scanner', 'Craving Assessment Outside Scanner' and 'Pre- and Post-Scanning Considerations'. The review of the 108 FDCR papers revealed significant gaps in the reporting of the items considered important by the experts. For instance, whereas items in the 'General fMRI Information' category were reported in 90.5% of the reviewed papers, items in the 'Pre- and Post-Scanning Considerations' category were reported by only 44.7% of reviewed FDCR studies. Considering the notable and sometimes unexpected gaps in the reporting of items deemed to be important by experts in any FDCR study, the protocols could benefit from the adoption of reporting standards. This checklist, a living document to be updated as the field and its methods advance, can help improve experimental design, reporting and the widespread understanding of the FDCR protocols. This checklist can also provide a sample for developing consensus statements for protocols in other areas of task-based fMRI.


Asunto(s)
Lista de Verificación , Imagen por Resonancia Magnética , Señales (Psicología) , Técnica Delphi , Humanos , Reproducibilidad de los Resultados
9.
Neuropsychopharmacology ; 47(9): 1633-1642, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35091674

RESUMEN

Nicotine Withdrawal Syndrome (NWS)-associated cognitive deficits are notably heterogeneous, suggesting underlying endophenotypic variance. However, parsing this variance in smokers has remained challenging. In this study, we identified smoker subgroups based on response accuracy during a Parametric Flanker Task (PFT) and then characterized distinct neuroimaging endophenotypes using a nicotine state manipulation. Smokers completed the PFT in two fMRI sessions (nicotine sated, abstinent). Based on response accuracy in the stressful, high cognitive demand PFT condition, smokers split into high (HTP, n = 21) and low task performer (LTP, n = 24) subgroups. Behaviorally, HTPs showed greater response accuracy (88.68% ± 5.19 SD) vs. LTPs (51.04% ± 4.72 SD), independent of nicotine state, and greater vulnerability to abstinence-induced errors of omission (EOm, p = 0.01). Neurobiologically, HTPs showed greater BOLD responses in attentional control brain regions, including bilateral insula, dorsal ACC, and frontoparietal Cx for the [correct responses (-) errors of commission] PFT contrast in both states. A whole-brain functional connectivity (FC) analysis with these subgroup-derived regions as seeds identified two circuits: Precentral Cx↔Insula and Insula↔Occipital Cx, with abstinence-induced FC strength increases seen only in HTPs. Finally, abstinence-induced FC and behavior (EOm) differences were positively correlated for HTPs in a Precentral Cx↔Orbitofrontal cortical circuit. In sum, only the HTP subgroup demonstrated sustained attention deficits following 48-hr nicotine abstinence, a stressor in dependent smokers. Unpacking underlying smoker heterogeneity with this 'dual (task and abstinence) stressor' approach revealed discrete smoker subgroups with differential attentional deficits to withdrawal that could be novel pharmacological/behavioral targets for therapeutic interventions to improve cessation outcomes.


Asunto(s)
Cese del Hábito de Fumar , Síndrome de Abstinencia a Sustancias , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Nicotina/efectos adversos , Fumadores , Cese del Hábito de Fumar/métodos , Síndrome de Abstinencia a Sustancias/psicología
10.
Neurobiol Aging ; 111: 71-81, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973470

RESUMEN

Low-level alcohol consumption is commonly perceived as being inconsequential or even beneficial for overall health, with some reports suggesting that it may protect against dementia or cardiovascular risks. However, these potential benefits do not preclude the concurrent possibility of negative health outcomes related to alcohol consumption. To examine whether casual, non-heavy drinking is associated with premature brain aging, we utilized the Brain-Age Regression Analysis and Computational Utility Software package to predict brain age in a community sample of adults [n = 240, mean age 35.1 (±10.7) years, 48% male, 49% African American]. Accelerated brain aging was operationalized as the difference between predicted and chronological age ("brain age gap"). Multiple regression analysis revealed a significant association between previous 90-day alcohol consumption and brain age gap (ß = 0.014, p = 0.023). We replicated these results in an independent cohort [n = 231 adults, mean age 34.3 (±11.1) years, 55% male, 28% African American: ß = 0.014, p = 0.002]. Our results suggest that even low-level alcohol consumption is associated with premature brain aging. The clinical significance of these findings remains to be investigated.


Asunto(s)
Envejecimiento Prematuro/etiología , Envejecimiento/fisiología , Consumo de Bebidas Alcohólicas/efectos adversos , Encéfalo/fisiología , Conducta Social , Adolescente , Adulto , Factores de Edad , Estudios de Cohortes , Demencia/prevención & control , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Persona de Mediana Edad , Análisis de Regresión , Adulto Joven
11.
Cereb Cortex ; 32(5): 933-948, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-34448810

RESUMEN

Cognitive aging varies tremendously across individuals and is often accompanied by regionally specific reductions in gray matter (GM) volume, even in the absence of disease. Rhesus monkeys provide a primate model unconfounded by advanced neurodegenerative disease, and the current study used a recognition memory test (delayed non-matching to sample; DNMS) in conjunction with structural imaging and voxel-based morphometry (VBM) to characterize age-related differences in GM volume and brain-behavior relationships. Consistent with expectations from a long history of neuropsychological research, DNMS performance in young animals prominently correlated with the volume of multiple structures in the medial temporal lobe memory system. Less anticipated correlations were also observed in the cingulate and cerebellum. In aged monkeys, significant volumetric correlations with DNMS performance were largely restricted to the prefrontal cortex and striatum. Importantly, interaction effects in an omnibus analysis directly confirmed that the associations between volume and task performance in the MTL and prefrontal cortex are age-dependent. These results demonstrate that the regional distribution of GM volumes coupled with DNMS performance changes across the lifespan, consistent with the perspective that the aged primate brain retains a substantial capacity for structural reorganization.


Asunto(s)
Sustancia Gris , Enfermedades Neurodegenerativas , Envejecimiento , Animales , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Reconocimiento en Psicología
12.
Cereb Cortex ; 32(14): 2943-2956, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34727171

RESUMEN

Striatal loci are connected to both the ipsilateral and contralateral frontal cortex. Normative quantitation of the dissimilarity between striatal loci's hemispheric connection profiles and its spatial variance across the striatum, and assessment of how interindividual differences relate to function, stands to further the understanding of the role of corticostriatal circuits in lateralized functions and the role of abnormal corticostriatal laterality in neurodevelopmental and other neuropsychiatric disorders. A resting-state functional connectivity fingerprinting approach (n = 261) identified "laterality hotspots"-loci whose profiles of connectivity with ipsilateral and contralateral frontal cortex were disproportionately dissimilar-in the right rostral ventral putamen, left rostral central caudate, and bilateral caudal ventral caudate. Findings were replicated in an independent sample and were robust to both preprocessing choices and the choice of cortical atlas used for parcellation definitions. Across subjects, greater rightward connectional laterality at the right ventral putamen hotspot and greater leftward connectional laterality at the left rostral caudate hotspot were associated with higher performance on tasks engaging lateralized functions (i.e., response inhibition and language, respectively). In sum, we find robust and reproducible evidence for striatal loci with disproportionately lateralized connectivity profiles where interindividual differences in laterality magnitude are associated with behavioral capacities on lateralized functions.


Asunto(s)
Cuerpo Estriado , Imagen por Resonancia Magnética , Mapeo Encefálico , Cuerpo Estriado/fisiología , Lateralidad Funcional/fisiología , Humanos , Vías Nerviosas/fisiología , Putamen/fisiología
13.
Drug Alcohol Depend ; 230: 109185, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861493

RESUMEN

BACKGROUND: Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention. METHODS: Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence. RESULTS: The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014). CONCLUSIONS: Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.


Asunto(s)
Cocaína , Metanfetamina , Sustancia Blanca , Imagen de Difusión Tensora , Humanos , Metanfetamina/efectos adversos , Nicotina , Sustancia Blanca/diagnóstico por imagen
14.
Brain Sci ; 11(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34942913

RESUMEN

Recent evidence suggests that the aberrant signaling of salience is associated with psychotic illness. Salience, however, can take many forms in task environments. For example, salience may refer to any of the following: (1) the valence of an outcome, (2) outcomes that are unexpected, called reward prediction errors (PEs), or (3) cues associated with uncertain outcomes. Here, we measure brain responses to different forms of salience in the context of a passive PE-signaling task, testing whether patients with schizophrenia (SZ) showed aberrant signaling of particular types of salience. We acquired event-related MRI data from 29 SZ patients and 23 controls during the performance of a passive outcome prediction task. Across groups, we found that the anterior insula and posterior parietal cortices were activated to multiple different types of salience, including PE magnitude and heightened levels of uncertainty. However, BOLD activation to salient events was not significantly different between patients and controls in many regions, including the insula, posterior parietal cortices, and default mode network nodes. Such results suggest that deficiencies in salience processing in SZ may not result from an impaired ability to signal salience per se, but instead the ability to use such signals to guide future actions. Notably, no between-group differences were observed in BOLD signal changes associated with PE-signaling in the striatum. However, positive symptom severity was found to significantly correlate with the magnitudes of salience contrasts in default mode network nodes. Our results suggest that, in an observational environment, SZ patients may show an intact ability to activate striatal and cortical regions to rewarding and non-rewarding salient events. Furthermore, reduced deactivation of a hypothesized default mode network node for SZ participants with high levels of positive symptoms, following salient events, point to abnormalities in interactions of the salience network with other brain networks, and their potential importance to positive symptoms.

15.
Brain Commun ; 3(2): fcab120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34189458

RESUMEN

Relapse is one of the most perplexing problems of addiction. The dorsolateral prefrontal cortex is crucially involved in numerous cognitive and affective processes that are implicated in the phenotypes of both substance use disorders and other neuropsychiatric diseases and has become the principal site to deliver transcranial magnetic stimulation for their treatment. However, the dorsolateral prefrontal cortex is an anatomically large and functionally heterogeneous region, and the specific dorsolateral prefrontal cortex locus and dorsolateral prefrontal cortex-based functional circuits that contribute to drug relapse and/or treatment outcome remain unknown. We systematically investigated the relationship of cocaine relapse with functional circuits from 98 dorsolateral prefrontal cortex regions-of-interest defined by evenly sampling the entire surface of bilateral dorsolateral prefrontal cortex in a cohort of cocaine dependent patients (n = 43, 5 Fr) following a psychosocial treatment intervention. Cox regression models were utilized to predict relapse likelihood based on dorsolateral prefrontal cortex functional connectivity strength. Functional connectivity from only 3 of the 98 dorsolateral prefrontal cortex loci, one in the left and two in the right hemisphere, significantly predicted cocaine relapse with an accuracy of 83.9%, 84.6% and 85.4%, respectively. Combining all three loci significantly improved prediction validity to 87.5%. Protective and risk circuits related to these dorsolateral prefrontal cortex loci were identified that have previously been implicated to support 'bottom up' drive to use drug and 'top down' control over behaviour together with social emotional, learning and memory processing. Three dorsolateral prefrontal cortex-centric circuits were identified that predict relapse to cocaine use with high accuracy. These functionally distinct dorsolateral prefrontal cortex-based circuits provide insights into the multiple roles played by the dorsolateral prefrontal cortex in cognitive and affective functioning that affects treatment outcome. The identified dorsolateral prefrontal cortex loci may serve as potential neuromodulation targets to be tested in subsequent clinical studies for addiction treatment and as clinically relevant biomarkers of its efficacy. Zhai et al. identify three dorsolateral prefrontal cortex (dlPFC)-centric circuits that predict cocaine relapse with high accuracy, providing insights into the multiple roles of the dlPFC in brain functioning that affects treatment outcome and suggesting the dlPFC loci as potential neuromodulation targets for addiction treatment.

16.
Neuroimage ; 236: 118009, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794361

RESUMEN

Longitudinal non-human primate neuroimaging has the potential to greatly enhance our understanding of primate brain structure and function. Here we describe its specific strengths, compared to both cross-sectional non-human primate neuroimaging and longitudinal human neuroimaging, but also its associated challenges. We elaborate on factors guiding the use of different analytical tools, subject-specific versus age-specific templates for analyses, and issues related to statistical power.


Asunto(s)
Envejecimiento , Desarrollo Humano , Neuroimagen , Primates , Animales , Estudios Transversales , Imagen de Difusión Tensora/métodos , Imagen de Difusión Tensora/normas , Neuroimagen Funcional/métodos , Neuroimagen Funcional/normas , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Neuroimagen/métodos , Neuroimagen/normas
17.
Pharmacol Biochem Behav ; 204: 173147, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33549570

RESUMEN

Transgenic neuromodulation tools have transformed the field of neuroscience over the past two decades by enabling targeted manipulation of neuronal populations and circuits with unprecedented specificity. Chemogenetic and optogenetic neuromodulation systems are among the most widely used and allow targeted control of neuronal activity through the administration of a selective compound or light, respectively. Innovative genetic targeting strategies are utilized to transduce specific cells to express transgenic receptors and opsins capable of manipulating neuronal activity. These allow mapping of neuroanatomical projection sites and link cellular manipulations with brain circuit functions and behavior. As these tools continue to expand knowledge of the nervous system in preclinical models, developing translational applications for human therapies is becoming increasingly possible. However, new strategies for implementing and monitoring transgenic tools are needed for safe and effective use in translational research and potential clinical applications. A major challenge for such applications is the need to track the location and function of chemogenetic receptors and opsins in vivo, and new developments in positron emission tomography (PET) imaging techniques offer promising solutions. The goal of this review is to summarize current research combining transgenic tools with PET for in vivo mapping and manipulation of brain circuits and to propose future directions for translational applications.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Optogenética/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Animales Modificados Genéticamente , Encéfalo/fisiología , Sistema Nervioso Central/fisiología , Vectores Genéticos/genética , Humanos , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología , Neuronas/fisiología , Opsinas/metabolismo , Ratas
18.
Commun Biol ; 4(1): 66, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446857

RESUMEN

Intracranial self-stimulation, in which an animal performs an operant response to receive regional brain electrical stimulation, is a widely used procedure to study motivated behavior. While local neuronal activity has long been measured immediately before or after the operant, imaging the whole brain in real-time remains a challenge. Herein we report a method that permits functional MRI (fMRI) of brain dynamics while mice are cued to perform an operant task: licking a spout to receive optogenetic stimulation to the medial prefrontal cortex (MPFC) during a cue ON, but not cue OFF. Licking during cue ON results in activation of a widely distributed network consistent with underlying MPFC projections, while licking during cue OFF (without optogenetic stimulation) leads to negative fMRI signal in brain regions involved in acute extinction. Noninvasive whole brain readout combined with circuit-specific neuromodulation opens an avenue for investigating adaptive behavior in both healthy and disease models.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Optogenética/métodos , Animales , Conducta Animal/fisiología , Señales (Psicología) , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Corteza Prefrontal/fisiología , Sacarosa
19.
Addict Biol ; 26(5): e13010, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33508888

RESUMEN

Brain asymmetry reflects left-right hemispheric differentiation, which is a quantitative brain phenotype that develops with age and can vary with psychiatric diagnoses. Previous studies have shown that substance dependence is associated with altered brain structure and function. However, it is unknown whether structural brain asymmetries are different in individuals with substance dependence compared with nondependent participants. Here, a mega-analysis was performed using a collection of 22 structural brain MRI datasets from the ENIGMA Addiction Working Group. Structural asymmetries of cortical and subcortical regions were compared between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis (n = 1,796) and nondependent participants (n = 996). Substance-general and substance-specific effects on structural asymmetry were examined using separate models. We found that substance dependence was significantly associated with differences in volume asymmetry of the nucleus accumbens (NAcc; less rightward; Cohen's d = 0.15). This effect was driven by differences from controls in individuals with alcohol dependence (less rightward; Cohen's d = 0.10) and nicotine dependence (less rightward; Cohen's d = 0.11). These findings suggest that disrupted structural asymmetry in the NAcc may be a characteristic of substance dependence.


Asunto(s)
Corteza Cerebelosa/patología , Trastornos Relacionados con Sustancias/diagnóstico por imagen , Adulto , Alcoholismo/diagnóstico por imagen , Conducta Adictiva/diagnóstico por imagen , Encéfalo/patología , Grosor de la Corteza Cerebral , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Núcleo Accumbens/patología , Tabaquismo/diagnóstico por imagen , Adulto Joven
20.
Artículo en Inglés | MEDLINE | ID: mdl-33436331

RESUMEN

BACKGROUND: The nicotine withdrawal syndrome (NWS) includes affective and cognitive disruptions whose incidence and severity vary across time during acute abstinence. However, most network-level neuroimaging uses static measures of resting-state functional connectivity and assumes time-invariance and is thus unable to capture dynamic brain-behavior relationships. Recent advances in resting-state functional connectivity signal processing allow characterization of time-varying functional connectivity (TVFC), which characterizes network communication between networks that reconfigure over the course of data collection. Therefore, TVFC may more fully describe network dysfunction related to the NWS. METHODS: To isolate alterations in the frequency and diversity of communication across network boundaries during acute nicotine abstinence, we scanned 25 cigarette smokers in the nicotine-sated and abstinent states and applied a previously validated method to characterize TVFC at a network and a nodal level within the brain. RESULTS: During abstinence, we found brain-wide decreases in the frequency of interactions between network nodes in different modular communities (i.e., temporal flexibility). In addition, within a subset of the networks examined, the variability of these interactions across community boundaries (i.e., spatiotemporal diversity) also decreased. Finally, within 2 of these networks, the decrease in spatiotemporal diversity was significantly related to NWS clinical symptoms. CONCLUSIONS: Using multiple measures of TVFC in a within-subjects design, we characterized a novel set of changes in network communication and linked these changes to specific behavioral symptoms of the NWS. These reductions in TVFC provide a meso-scale network description of the relative inflexibility of specific large-scale brain networks during acute abstinence.


Asunto(s)
Nicotina , Síndrome de Abstinencia a Sustancias , Encéfalo , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA