Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 154(Pt 10): 3033-3041, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18832309

RESUMEN

Mycoplasma genitalium (Mg) is a mollicute that causes a range of human urogenital infections. A hallmark of these bacteria is their ability to establish chronic infections that can persist despite completion of appropriate antibiotic therapies and intact and functional immune systems. Intimate adherence and surface colonization of mycoplasmas to host cells are important pathogenic features. However, their facultative intracellular nature is poorly understood, partly due to difficulties in developing and standardizing cellular interaction model systems. Here, we characterize growth and invasion properties of two Mg strains (G37 and 1019V). Mg G37 is a high-passage laboratory strain, while Mg 1019V is a low-passage isolate recovered from the cervix. The two strains diverge partially in gene sequences for adherence-related proteins and exhibit subtle variations in their axenic growth. However, with both strains and consistent with our previous studies, a subset of adherent Mg organisms invade host cells and exhibit perinuclear targeting. Remarkably, intranuclear localization of Mg proteins is observed, which occurred as early as 30 min after infection. Mg strains deficient in adherence were markedly reduced in their ability to invade and associate with perinuclear and nuclear sites.


Asunto(s)
Adhesión Bacteriana , Núcleo Celular/microbiología , Interacciones Huésped-Patógeno , Infecciones por Mycoplasma/microbiología , Mycoplasma genitalium/crecimiento & desarrollo , Análisis de Varianza , Cuello del Útero/microbiología , ADN Bacteriano/genética , Femenino , Células HeLa , Humanos , Microscopía Confocal , Microscopía Fluorescente , Mycoplasma genitalium/genética , Reacción en Cadena de la Polimerasa
2.
Microbiology (Reading) ; 151(Pt 2): 557-567, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15699204

RESUMEN

Reactive oxidants are a primary weapon of the macrophage antibacterial arsenal. The ability of virulent Salmonella to repair oxidative DNA lesions via the base-excision repair system (BER) enables its survival and replication within the macrophage, but is not required for extracellular growth. Salmonella also inhibits the targeting of oxidant generators to the Salmonella-containing vacuole (SCV) via Salmonella Pathogenicity Island 2 (SPI2). Accordingly, the relative contributions of these two discrete systems to Salmonella resistance to both oxidative mutagenesis and lethality within RAW 264.7 macrophages were investigated. A mutant unable to initiate BER was constructed by deleting all three BER bifunctional glycosylases (Deltafpg/nth/nei), and was significantly impaired for early intramacrophage survival. Mutations in various SPI2 effector (sifA and sseEFG) and structural (ssaV) genes were then analysed in the BER mutant background. Loss of SPI2 function alone appeared to increase macrophage-induced mutation. Statistical analyses of the reduced intramacrophage survival of SPI2 mutants and the corresponding SPI2/BER mutants indicated a synergistic interaction between BER and SPI2, suggesting that SPI2 promotes intramacrophage survival by protecting Salmonella DNA from exposure to macrophage oxidants. Furthermore, this protection may involve the SseF and SseG effectors. In contrast, the SifA effector did not seem to play a major role in oxidant protection. It is speculated that Salmonella initially stalls oxidative killing by preserving its genomic integrity through the function of BER, until it can upregulate SPI2 to limit its exposure to macrophage oxidants.


Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Salmonella typhimurium/patogenicidad , Animales , Proteínas Bacterianas/genética , Línea Celular , Daño del ADN , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Ratones , Estrés Oxidativo , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Virulencia
3.
Microbiology (Reading) ; 150(Pt 7): 2055-2068, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15256549

RESUMEN

SseA, a key Salmonella virulence determinant, is a small, basic pI protein encoded within the Salmonella pathogenicity island 2 and serves as a type III secretion system chaperone for SseB and SseD. Both SseA partners are subunits of the surface-localized translocon module that delivers effectors into the host cell; SseB is predicted to compose the translocon sheath and SseD is a putative translocon pore subunit. In this study, SseA molecular interactions with its partners were characterized further. Yeast two-hybrid screens indicate that SseA binding requires a C-terminal domain within both partners. An additional central domain within SseD was found to influence binding. The SseA-binding region within SseB was found to encompass a predicted amphipathic helix of a type participating in coiled-coil interactions that are implicated in the assembly of translocon sheaths. Deletions that impinge upon this putative coiled-coiled domain prevent SseA binding, suggesting that SseA occupies a portion of the coiled-coil. SseA occupancy of this motif is envisioned to be sufficient to prevent premature SseB self-association inside bacteria. Domain mapping on the chaperone was also performed. A deletion of the SseA N-terminus, or site-directed mutations within this region, allowed stabilization of SseB, but its export was disrupted. Therefore, the N-terminus of SseA provides a function that is essential for SseB export, but dispensable for partner binding and stabilization.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Salmonella typhimurium/patogenicidad , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Células HeLa , Humanos , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Mutación , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Técnicas del Sistema de Dos Híbridos , Virulencia
4.
Mol Microbiol ; 48(2): 549-59, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12675811

RESUMEN

The intracellular pathogen, Salmonella enterica serovar Typhimurium, is able to proliferate in phagocytes, although reactive oxygen and nitrogen intermediates are lethal to most phagocytosed bacteria. To determine whether repair of oxidatively damaged DNA is involved in S. typhimurium intramacrophage proliferation, null mutants of the DNA base excision repair (BER) system were generated. These mutants were deficient in discrete enzymes (Deltanth, Deltanei, Deltaxth, Deltanfo) or in the defined glycosylase (Deltanth/nei) and endonuclease (Deltaxth/nfo) steps. In this study, S. typhimurium BER mutants are characterized for the first time. In vitro characterization of the Salmonella BER mutants revealed phenotypes that are mostly consistent with characterized Escherichia coli BER mutants. These strains were used to evaluate the role of BER in the context of Salmonella virulence. S. typhimurium Deltaxth and Deltaxth/nfo were significantly impaired for survival in both cultured and primary macrophages activated with interferon (IFN)-gamma. Survival of Deltaxth and Deltaxth/nfo was improved nearly to wild-type levels in activated primary macrophages lacking both phagocyte oxidase and inducible nitric oxide synthase. In the murine typhoid fever model, Deltanth/nei was fivefold attenuated and Deltaxth/nfo was 12-fold attenuated compared with wild type. These data indicate that DNA oxidation is a mechanism that macrophages use to damage intracellular Salmonella, and suggest that BER-mediated repair of this damage may be important in the establishment of Salmonella infection. We speculate that adaptation to a pathogenic lifestyle may influence the acquisition and retention of redundant BER enzymes.


Asunto(s)
Reparación del ADN , ADN Bacteriano/metabolismo , Mutación , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Animales , Supervivencia Celular , Células Cultivadas , Daño del ADN , ADN Bacteriano/efectos de la radiación , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxidación-Reducción , Radiación Ionizante , Salmonella typhimurium/metabolismo
5.
Infect Immun ; 71(4): 2247-52, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12654850

RESUMEN

Three MudJ prototrophs demonstrated that intracellular replication is a Salmonella virulence trait (K. Y. Leung and B. B. Finlay, Proc. Natl. Acad. Sci. USA, 88:11470-11474, 1991). mutS and mutH are disrupted in mutants 3-11 and 12-23, and ssaQ is disrupted in mutant 17-21. Further analysis revealed that loss of Salmonella pathogenicity island 2 function underlies the intracellular replication defect of 3-11 and 17-21.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN , Células Epiteliales/microbiología , Mutación , Salmonella/crecimiento & desarrollo , Salmonella/patogenicidad , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Línea Celular , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Salmonella/genética , Virulencia/genética
6.
Mol Microbiol ; 47(5): 1341-51, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12603739

RESUMEN

The Salmonella Pathogenicity Island 2 (SPI2) encodes a type III secretion system (TTSS) shown to be critical for adaptation to the intracellular environment within both phagocytic and epithelial cell types. Within SPI2, the Effector region encodes several exported proteins that comprise the SPI2 translocon (SseB, C, D). SseA is the first protein encoded within the Effector region but remains an unclassified factor that is essential for SPI2 function. In the present study, we determined that SseA shares several features with TTSS chaperones: it is small (12.5 kDa), located directly upstream of a TTSS export target (SseB), and contains an amphipathic, C-terminal alpha-helix. Construction and analysis of a DeltasseA mutant demonstrated that the total amount of SseB is significantly reduced and SPI2 export of SseB to the bacterial surface is prevented. SseB accumulation and export were restored when SseA was provided in trans. Loss of SseA does not cause a generalized defect in SPI2 secretory function as export of SseC, encoded downstream of SseB, still occurs in the DeltasseA strain. Quantitative PCR indicates that the loss of SseB in DeltasseA does not occur at the transcriptional level. Co-purification studies demonstrate that SseA directly binds to SseB. Collectively, these results demonstrate that SseA functions as a TTSS chaperone for the SPI2 translocon component, SseB.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de la Membrana/fisiología , Chaperonas Moleculares/fisiología , Salmonella typhimurium/fisiología , Animales , Proteínas Bacterianas/genética , Línea Celular/microbiología , Membrana Celular/metabolismo , Citoplasma/metabolismo , Regulación Bacteriana de la Expresión Génica , Marcación de Gen , Macrófagos/microbiología , Proteínas de la Membrana/genética , Ratones , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Peso Molecular , Porinas/genética , Unión Proteica , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Transporte de Proteínas/fisiología , Salmonella typhimurium/genética , Fracciones Subcelulares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...