Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005465

RESUMEN

Glucolipotoxicity, caused by combined hyperglycemia and hyperlipidemia, results in ß-cell failure and type 2 diabetes (T2D) via cellular stress-related mechanisms. Activating transcription factor 4 (Atf4) is an essential effector of stress response. We show here that Atf4 expression in ß-cells is dispensable for glucose homeostasis in young mice, but it is required for ß-cell function during aging and under obesity-related metabolic stress. Henceforth, aged Atf4- deficient ß-cells display compromised secretory function under acute hyperglycemia. In contrast, they are resistant to acute free fatty acid-induced loss-of identity and dysfunction. At molecular level, Atf4 -deficient ß-cells down-regulate genes involved in protein translation, reducing ß-cell identity gene products under high glucose. They also upregulate several genes involved in lipid metabolism or signaling, likely contributing to their resistance to free fatty acid-induced dysfunction. These results suggest that Atf4 activation is required for ß-cell identity and function under high glucose, but this paradoxically induces ß-cell failure in the presence of high levels of free fatty acids. Different branches of Atf4 activity could be manipulated for protecting ß-cells from metabolic stress-induced failure. Highlights: Atf4 is dispensable in ß-cells in young miceAtf4 protects ß-cells under high glucoseAtf4 exacerbate fatty acid-induced ß-cell defectsAtf4 activates translation but depresses lipid-metabolism.

2.
Diabetes ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058602

RESUMEN

A hallmark of type 2 diabetes (T2D) is endocrine islet ß-cell failure, which can occur via cell dysfunction, loss-of-identity, and/or death. How each is induced remains largely unknown. Here, we use mouse ß-cells that are deficient for Myelin transcription factors (Myt TFs, including Myt1, 2, and 3) to address this question. We have reported that inactivating all three Myt genes in pancreatic progenitor cells (MytPancΔ) causes ß-cell failure and late onset diabetes in mice. Their lower expression in human ß-cells is correlated with ß-cell dysfunction and SNPs in MYT2 and MYT3 are associated in higher risk of T2D. We now show that these Myt TF-deficient postnatal ß-cells also de-differentiate by reactivating several progenitor markers. Intriguingly, mosaic Myt TF inactivation in only a portion of islet ß-cells does not results in overt diabetes, but this creates a condition where Myt TF-deficient ß-cells stay alive while activating several markers of Ppy-expressing islet cells. By transplanting MytPancΔ islets into the anterior eye chambers of immune-compromised mice, we directly show that glycemic and obesity-related conditions influence cell fate, with euglycemia inducing several Ppy+ cell markers while hyperglycemia and insulin resistance inducing additional cell death. These findings suggest that the observed ß-cell defects in T2D depend on not only their inherent genetic/epigenetic defects, but also the metabolic load.

3.
Cell Metab ; 36(1): 90-102.e7, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171340

RESUMEN

Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified ß cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). ß cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in ß cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1ß receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single ß cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.


Asunto(s)
Células Secretoras de Insulina , FN-kappa B , Animales , Humanos , Ratones , Cromatina/metabolismo , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , FN-kappa B/metabolismo
4.
bioRxiv ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37662349

RESUMEN

MAFA and MAFB are related basic-leucine-zipper domain containing transcription factors which have important regulatory roles in a variety of cellular contexts, including pancreatic islet hormone producing α and ß cells. These proteins have similar as well as distinct functional properties, and here we first used AlphaFold2, an artificial intelligence-based structural prediction program, to obtain insight into the three-dimensional organization of their non-DNA binding/dimerization sequences. This analysis was conducted on the wildtype (WT) proteins as well the pathogenic MAFA Ser64Phe (MAFA S64F ) and MAFB Ser70Ala (MAFB S70A ) mutants, with structural differences revealed between MAFA WT and MAFB WT in addition to MAFA S64F and MAFA WT , but not MAFB S70A and MAFB WT . Functional analysis disclosed that the inability to properly phosphorylate at S70 in MAFB S70A , like S65 in MAFA S64F , greatly increased protein stability and enabled MAFB S70A to accelerate cellular senescence in cultured cells. Significant differences were also observed in the ability of MAFA, MAFA S64F , MAFB, and MAFB S70A to cooperatively stimulate Insulin enhancer-driven activity in the presence of other islet-enriched transcription factors. Experiments performed on protein chimeras disclosed that these properties were greatly influenced by structural differences found between the WT and mutant proteins. In general, these results revealed that AlphaFold2 predicts features essential to protein activity.

5.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606041

RESUMEN

Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet ß cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in ß cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human ß cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D ß cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human ß cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-ß cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional ß cell signature.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Adulto , Humanos , Animales , Ratones , Factor de Transcripción MafB/genética , Insulina
6.
Cell Metab ; 34(2): 256-268.e5, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108513

RESUMEN

In diabetes, glucagon secretion from pancreatic α cells is dysregulated. The underlying mechanisms, and whether dysfunction occurs uniformly among cells, remain unclear. We examined α cells from human donors and mice using electrophysiological, transcriptomic, and computational approaches. Rising glucose suppresses α cell exocytosis by reducing P/Q-type Ca2+ channel activity, and this is disrupted in type 2 diabetes (T2D). Upon high-fat feeding of mice, α cells shift toward a "ß cell-like" electrophysiological profile in concert with indications of impaired identity. In human α cells we identified links between cell membrane properties and cell surface signaling receptors, mitochondrial respiratory chain complex assembly, and cell maturation. Cell-type classification using machine learning of electrophysiology data demonstrated a heterogenous loss of "electrophysiologic identity" in α cells from donors with type 2 diabetes. Indeed, a subset of α cells with impaired exocytosis is defined by an enrichment in progenitor and lineage markers and upregulation of an immature transcriptomic phenotype, suggesting important links between α cell maturation state and dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagón , Islotes Pancreáticos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis/fisiología , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones
7.
Endocrinology ; 163(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086144

RESUMEN

During development of type 2 diabetes (T2D), excessive nutritional load is thought to expose pancreatic islets to toxic effects of lipids and reduce ß-cell function and mass. However, lipids also play a positive role in cellular metabolism and function. Thus, proper trafficking of lipids is critical for ß cells to maximize the beneficial effects of these molecules while preventing their toxic effects. Lipid droplets (LDs) are organelles that play an important role in the storage and trafficking of lipids. In this review, we summarize the discovery of LDs in pancreatic ß cells, LD lifecycle, and the effect of LD catabolism on ß-cell insulin secretion. We discuss factors affecting LD formation such as age, cell type, species, and nutrient availability. We then outline published studies targeting critical LD regulators, primarily in rat and human ß-cell models, to understand the molecular effect of LD formation and degradation on ß-cell function and health. Furthermore, based on the abnormal LD accumulation observed in human T2D islets, we discuss the possible role of LDs during the development of ß-cell failure in T2D. Current knowledge indicates that proper formation and clearance of LDs are critical to normal insulin secretion, endoplasmic reticulum homeostasis, and mitochondrial integrity in ß cells. However, it remains unclear whether LDs positively or negatively affect human ß-cell demise in T2D. Thus, we discuss possible research directions to address the knowledge gap regarding the role of LDs in ß-cell failure.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Células Secretoras de Insulina/fisiología , Células Secretoras de Insulina/ultraestructura , Gotas Lipídicas/fisiología , Animales , Muerte Celular , Senescencia Celular , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico , Humanos , Secreción de Insulina/fisiología , Perilipina-2/fisiología , Perilipina-5/fisiología , Ratas
8.
Cell Rep ; 37(2): 109813, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644565

RESUMEN

A heterozygous missense mutation of the islet ß cell-enriched MAFA transcription factor (p.Ser64Phe [S64F]) is found in patients with adult-onset ß cell dysfunction (diabetes or insulinomatosis), with men more prone to diabetes than women. This mutation engenders increased stability to the unstable MAFA protein. Here, we develop a S64F MafA mouse model to determine how ß cell function is affected and find sex-dependent phenotypes. Heterozygous mutant males (MafAS64F/+) display impaired glucose tolerance, while females are slightly hypoglycemic with improved blood glucose clearance. Only MafAS64F/+ males show transiently higher MafA protein levels preceding glucose intolerance and sex-dependent changes to genes involved in Ca2+ signaling, DNA damage, aging, and senescence. MAFAS64F production in male human ß cells also accelerate cellular senescence and increase senescence-associated secretory proteins compared to cells expressing MAFAWT. These results implicate a conserved mechanism of accelerated islet aging and senescence in promoting diabetes in MAFAS64F carriers in a sex-biased manner.


Asunto(s)
Senescencia Celular , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Animales , Animales Modificados Genéticamente , Glucemia/metabolismo , Señalización del Calcio , Línea Celular , Daño del ADN , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Insulina/sangre , Células Secretoras de Insulina/patología , Factores de Transcripción Maf de Gran Tamaño/genética , Masculino , Ratones Endogámicos C57BL , Mutación Missense , Fenotipo , Caracteres Sexuales , Factores Sexuales
9.
J Clin Invest ; 131(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34491912

RESUMEN

The transcription factor NFATC2 induces ß cell proliferation in mouse and human islets. However, the genomic targets that mediate these effects have not been identified. We expressed active forms of Nfatc2 and Nfatc1 in human islets. By integrating changes in gene expression with genomic binding sites for NFATC2, we identified approximately 2200 transcriptional targets of NFATC2. Genes induced by NFATC2 were enriched for transcripts that regulate the cell cycle and for DNA motifs associated with the transcription factor FOXP. Islets from an endocrine-specific Foxp1, Foxp2, and Foxp4 triple-knockout mouse were less responsive to NFATC2-induced ß cell proliferation, suggesting the FOXP family works to regulate ß cell proliferation in concert with NFATC2. NFATC2 induced ß cell proliferation in both mouse and human islets, whereas NFATC1 did so only in human islets. Exploiting this species difference, we identified approximately 250 direct transcriptional targets of NFAT in human islets. This gene set enriches for cell cycle-associated transcripts and includes Nr4a1. Deletion of Nr4a1 reduced the capacity of NFATC2 to induce ß cell proliferation, suggesting that much of the effect of NFATC2 occurs through its induction of Nr4a1. Integration of noncoding RNA expression, chromatin accessibility, and NFATC2 binding sites enabled us to identify NFATC2-dependent enhancer loci that mediate ß cell proliferation.


Asunto(s)
Proliferación Celular , Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Factores de Transcripción NFATC/metabolismo , Elementos de Respuesta , Transcripción Genética , Animales , Humanos , Ratones Noqueados , Factores de Transcripción NFATC/genética
10.
Diabetes ; 70(11): 2595-2607, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34433630

RESUMEN

Free fatty acids (FFAs) are often stored in lipid droplet (LD) depots for eventual metabolic and/or synthetic use in many cell types, such a muscle, liver, and fat. In pancreatic islets, overt LD accumulation was detected in humans but not mice. LD buildup in islets was principally observed after roughly 11 years of age, increasing throughout adulthood under physiologic conditions, and also enriched in type 2 diabetes. To obtain insight into the role of LDs in human islet ß-cell function, the levels of a key LD scaffold protein, perilipin 2 (PLIN2), were manipulated by lentiviral-mediated knockdown (KD) or overexpression (OE) in EndoCßH2-Cre cells, a human cell line with adult islet ß-like properties. Glucose-stimulated insulin secretion was blunted in PLIN2KD cells and improved in PLIN2OE cells. An unbiased transcriptomic analysis revealed that limiting LD formation induced effectors of endoplasmic reticulum (ER) stress that compromised the expression of critical ß-cell function and identity genes. These changes were essentially reversed by PLIN2OE or using the ER stress inhibitor, tauroursodeoxycholic acid. These results strongly suggest that LDs are essential for adult human islet ß-cell activity by preserving FFA homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Gotas Lipídicas/metabolismo , Lípidos/toxicidad , Calcio , Diferenciación Celular , Línea Celular , Glucosa/farmacología , Homeostasis , Humanos , Secreción de Insulina/efectos de los fármacos , Metabolismo de los Lípidos , Perilipina-2/genética , Perilipina-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico
11.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34428183

RESUMEN

Islet-enriched transcription factors (TFs) exert broad control over cellular processes in pancreatic α and ß cells, and changes in their expression are associated with developmental state and diabetes. However, the implications of heterogeneity in TF expression across islet cell populations are not well understood. To define this TF heterogeneity and its consequences for cellular function, we profiled more than 40,000 cells from normal human islets by single-cell RNA-Seq and stratified α and ß cells based on combinatorial TF expression. Subpopulations of islet cells coexpressing ARX/MAFB (α cells) and MAFA/MAFB (ß cells) exhibited greater expression of key genes related to glucose sensing and hormone secretion relative to subpopulations expressing only one or neither TF. Moreover, all subpopulations were identified in native pancreatic tissue from multiple donors. By Patch-Seq, MAFA/MAFB-coexpressing ß cells showed enhanced electrophysiological activity. Thus, these results indicate that combinatorial TF expression in islet α and ß cells predicts highly functional, mature subpopulations.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adulto , Fenómenos Electrofisiológicos , Expresión Génica , Células Secretoras de Glucagón/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo , Persona de Mediana Edad , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma , Adulto Joven
12.
Cell Metab ; 32(6): 1028-1040.e4, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33207245

RESUMEN

Isolated reports of new-onset diabetes in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2 is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into ß cells via co-expression of its canonical cell entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2); however, their expression in human pancreas has not been clearly defined. We analyzed six transcriptional datasets of primary human islet cells and found that ACE2 and TMPRSS2 were not co-expressed in single ß cells. In pancreatic sections, ACE2 and TMPRSS2 protein was not detected in ß cells from donors with and without diabetes. Instead, ACE2 protein was expressed in islet and exocrine tissue microvasculature and in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. These findings reduce the likelihood that SARS-CoV-2 directly infects ß cells in vivo through ACE2 and TMPRSS2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Diabetes Mellitus/metabolismo , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2/análisis , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/complicaciones , COVID-19/genética , Células Cultivadas , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/genética , Expresión Génica , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , Microvasos/metabolismo , Páncreas/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Serina Endopeptidasas/análisis , Serina Endopeptidasas/genética
13.
bioRxiv ; 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33106804

RESUMEN

Reports of new-onset diabetes and diabetic ketoacidosis in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2, the virus that causes COVID-19, is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into host ß cells via cell surface co-expression of ACE2 and TMPRSS2, the putative receptor and effector protease, respectively. To define ACE2 and TMPRSS2 expression in the human pancreas, we examined six transcriptional datasets from primary human islet cells and assessed protein expression by immunofluorescence in pancreata from donors with and without diabetes. ACE2 and TMPRSS2 transcripts were low or undetectable in pancreatic islet endocrine cells as determined by bulk or single cell RNA sequencing, and neither protein was detected in α or ß cells from these donors. Instead, ACE2 protein was expressed in the islet and exocrine tissue microvasculature and also found in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. The absence of significant ACE2 and TMPRSS2 co-expression in islet endocrine cells reduces the likelihood that SARS-CoV-2 directly infects pancreatic islet ß cells through these cell entry proteins.

14.
Nat Metab ; 2(6): 547-557, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32694729

RESUMEN

Little is known about regulated glucagon secretion by human islet α-cells compared to insulin secretion from ß-cells, despite conclusive evidence of dysfunction in both cell types in diabetes mellitus. Distinct insulins in humans and mice permit in vivo studies of human ß-cell regulation after human islet transplantation in immunocompromised mice, whereas identical glucagon sequences prevent analogous in vivo measures of glucagon output from human α-cells. Here, we use CRISPR-Cas9 editing to remove glucagon codons 2-29 in immunocompromised NSG mice, preserving the production of other proglucagon-derived hormones. Glucagon knockout NSG (GKO-NSG) mice have metabolic, liver and pancreatic phenotypes associated with glucagon-signalling deficits that revert after transplantation of human islets from non-diabetic donors. Glucagon hypersecretion by transplanted islets from donors with type 2 diabetes revealed islet-intrinsic defects. We suggest that GKO-NSG mice provide an unprecedented resource to investigate human α-cell regulation in vivo.


Asunto(s)
Glucagón/metabolismo , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/metabolismo , Adulto , Animales , Sistemas CRISPR-Cas , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Glucagón/genética , Células Secretoras de Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad
15.
Nat Commun ; 11(1): 2742, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488111

RESUMEN

Next generation sequencing studies have highlighted discrepancies in ß-cells which exist between mice and men. Numerous reports have identified MAF BZIP Transcription Factor B (MAFB) to be present in human ß-cells postnatally, while its expression is restricted to embryonic and neo-natal ß-cells in mice. Using CRISPR/Cas9-mediated gene editing, coupled with endocrine cell differentiation strategies, we dissect the contribution of MAFB to ß-cell development and function specifically in humans. Here we report that MAFB knockout hPSCs have normal pancreatic differentiation capacity up to the progenitor stage, but favor somatostatin- and pancreatic polypeptide-positive cells at the expense of insulin- and glucagon-producing cells during endocrine cell development. Our results describe a requirement for MAFB late in the human pancreatic developmental program and identify it as a distinguishing transcription factor within islet cell subtype specification. We propose that hPSCs represent a powerful tool to model human pancreatic endocrine development and associated disease pathophysiology.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Animales , Sistemas CRISPR-Cas , Diferenciación Celular , Femenino , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Células Madre , Transcriptoma
17.
Dev Cell ; 53(4): 390-405.e10, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32359405

RESUMEN

Although cellular stress response is important for maintaining function and survival, overactivation of late-stage stress effectors cause dysfunction and death. We show that the myelin transcription factors (TFs) Myt1 (Nzf2), Myt2 (Myt1l, Nztf1, and Png-1), and Myt3 (St18 and Nzf3) prevent such overactivation in islet ß cells. Thus, we found that co-inactivating the Myt TFs in mouse pancreatic progenitors compromised postnatal ß cell function, proliferation, and survival, preceded by upregulation of late-stage stress-response genes activating transcription factors (e.g., Atf4) and heat-shock proteins (Hsps). Myt1 binds putative enhancers of Atf4 and Hsps, whose overexpression largely recapitulated the Myt-mutant phenotypes. Moreover, Myt(MYT)-TF levels were upregulated in mouse and human ß cells during metabolic stress-induced compensation but downregulated in dysfunctional type 2 diabetic (T2D) human ß cells. Lastly, MYT knockdown caused stress-gene overactivation and death in human EndoC-ßH1 cells. These findings suggest that Myt TFs are essential restrictors of stress-response overactivity.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Diabetes Mellitus/patología , Proteínas de Choque Térmico/metabolismo , Células Secretoras de Insulina/citología , Estrés Fisiológico , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Factor de Transcripción Activador 4/genética , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Diabetes Mellitus/metabolismo , Femenino , Proteínas de Choque Térmico/genética , Humanos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción/genética
18.
ACS Biomater Sci Eng ; 6(7): 4155-4165, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463310

RESUMEN

Regenerating human islet organoids from stem cells remains a significant challenge because of our limited knowledge on cues essential for developing the endocrine organoids in vitro. In this study, we discovered that a natural material prepared from a decellularized rat pancreatic extracellular matrix (dpECM) induces the self-assembly of human islet organoids during induced pluripotent stem cell (iPSC) pancreatic differentiation. For the first time, we demonstrated that the iPSC-derived islet organoids formed in the presence of the dpECM are capable of glucose-responsive secretion of both insulin and glucagon, two major hormones that maintain blood glucose homeostasis. The characterization of the organoids revealed that the organoids consisted of all major endocrine cell types, including α, ß, δ, and pancreatic polypeptide cells, that were assembled into a tissue architecture similar to that of human islets. The exposure of iPSCs to the dpECM during differentiation resulted in considerably elevated expression of key pancreatic transcription factors such as PDX-1, MAFA, and NKX6.1 and the production of all major hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide from stem cell-derived organoids. This study highlights the importance of natural, bioactive biomaterials for building microenvironments crucial to regenerating islet organoids from stem cells.


Asunto(s)
Islotes Pancreáticos , Células Madre Pluripotentes , Diferenciación Celular , Insulina , Organoides
19.
Diabetes ; 69(3): 342-354, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31836690

RESUMEN

Human but not mouse islets transplanted into immunodeficient NSG mice effectively accumulate lipid droplets (LDs). Because chronic lipid exposure is associated with islet ß-cell dysfunction, we investigated LD accumulation in the intact human and mouse pancreas over a range of ages and states of diabetes. Very few LDs were found in normal human juvenile pancreatic acinar and islet cells, with numbers subsequently increasing throughout adulthood. While accumulation appeared evenly distributed in postjuvenile acinar and islet cells in donors without diabetes, LDs were enriched in islet α- and ß-cells from donors with type 2 diabetes (T2D). LDs were also found in the islet ß-like cells produced from human embryonic cell-derived ß-cell clusters. In contrast, LD accumulation was nearly undetectable in the adult rodent pancreas, even in hyperglycemic and hyperlipidemic models or 1.5-year-old mice. Taken together, there appear to be significant differences in pancreas islet cell lipid handling between species, and the human juvenile and adult cell populations. Moreover, our results suggest that LD enrichment could be impactful to T2D islet cell function.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Células Secretoras de Glucagón/patología , Células Secretoras de Insulina/patología , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/patología , Gotas Lipídicas/patología , Células Acinares/patología , Células Acinares/ultraestructura , Adolescente , Adulto , Factores de Edad , Anciano , Animales , Niño , Preescolar , Diabetes Mellitus Experimental/patología , Células Madre Embrionarias , Femenino , Células Secretoras de Glucagón/ultraestructura , Humanos , Lactante , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/citología , Islotes Pancreáticos/ultraestructura , Gotas Lipídicas/ultraestructura , Masculino , Ratones , Microscopía Electrónica , Microscopía Fluorescente , Persona de Mediana Edad , Ratas , Donantes de Tejidos , Adulto Joven
20.
Clin Breast Cancer ; 19(5): 333-339, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31281053

RESUMEN

BACKGROUND: The B2 Prognostic Score (B2PS) is a clinical decision-making tool in metastatic breast cancer (MBC) that provides risk classification based on routine parameters. This study validates the B2PS in an independent series of MBC for the whole study group and for each intrinsic subtype. PATIENTS AND METHODS: We analyzed 641 metastasized patients, treated in 17 German certified breast cancer centers between 2001 and 2009. They were classified into low, intermediate, and high-risk groups according to B2PS. Overall survival (OS) curves for the various B2PS groups were compared with Kaplan-Meier method. RESULTS: According to the B2PS formula, 42.3% of patients were classified as low risk, 25.4% as intermediate risk and 32.3% as high risk. Intermediate- and high-risk patients had a statistically significant decreased OS compared with B2PS low-risk patients: (intermediate-risk: hazard ratio, 1.36; 95% confidence interval, 1.04-1.77; P = .023; high-risk: hazard ratio, 2.62; 95% confidence interval, 2.06-3.32; P < .001). The 5-year survival rates of low-, intermediate-, and high-risk patients were 41.3%, 26.9%, and 10.2%, respectively. The distribution of B2PS risk groups varied significantly within the intrinsic subtypes. For each intrinsic subtype, B2PS gives an additional risk classification. CONCLUSIONS: This study demonstrates the reproducibility of the B2PS based on routinely assessable parameters and confirms its prognostic value in an independent entire cohort of MBC as well as in the separate intrinsic subtypes. It therefore can help in counseling and individualizing the therapeutic regimens of those patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Óseas/mortalidad , Neoplasias Encefálicas/mortalidad , Neoplasias de la Mama/mortalidad , Toma de Decisiones Clínicas , Neoplasias Hepáticas/mortalidad , Neoplasias Pulmonares/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Pronóstico , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Estudios Retrospectivos , Factores de Riesgo , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...