Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 375, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878165

RESUMEN

The selection of oleaginous bacteria, potentially applicable to biotechnological approaches, is usually carried out by different expensive and time-consuming techniques. In this study, we used Oil Red O (ORO) as an useful dye for staining of neutral lipids (triacylglycerols and wax esters) on thin-layer chromatography plates. ORO could detect minimal quantities of both compounds (detection limit, 0.0025 mg of tripalmitin or 0.005 mg of cetylpalmitate). In addition, we developed a specific, rapid, and inexpensive screening methodology to detect triacylglycerol-accumulating microorganisms grown on the agar plate. This staining methodology detected 9/13 strains with a triacylglycerol content higher than 20% by cellular dry weight. ORO did not stain polyhydroxyalkanoates-producing bacteria. The four oleaginous strains not detected by this screening methodology exhibited a mucoid morphology of their colonies. Apparently, an extracellular polymeric substance produced by these strains hampered the entry of the lipophilic dye into cells. The utilization of the developed screening methodology would allow selecting of oleaginous bacteria in a simpler and faster way than techniques usually used nowadays, based on unspecific staining protocols and spectrophotometric or chromatographic methods. Furthermore, the use of ORO as a staining reagent would easily characterize the neutral lipids accumulated by microorganisms as reserve compounds. KEY POINTS: • Oil Red O staining is specific for triacylglycerols • Oil Red O staining is useful to detect oleaginous bacteria • Fast and inexpensive staining to isolate oleaginous bacteria from the environment.


Asunto(s)
Compuestos Azo , Bacterias , Coloración y Etiquetado , Triglicéridos , Cromatografía en Capa Delgada , Coloración y Etiquetado/métodos , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/química , Compuestos Azo/metabolismo , Compuestos Azo/química , Triglicéridos/metabolismo , Triglicéridos/análisis , Técnicas Bacteriológicas/métodos
3.
Appl Microbiol Biotechnol ; 108(1): 264, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489042

RESUMEN

Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Andamios del Tejido/química , Materiales Biocompatibles/química , Proteínas Bacterianas , Ingeniería de Tejidos/métodos , Glutaral , Reactivos de Enlaces Cruzados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...