Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2300680, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461409

RESUMEN

The porous structure of microgels significantly influences their properties and, thus, their suitability for various applications, in particular as building blocks for tissue scaffolds. Porosity is one of the crucial features for microgel-cell interactions and significantly increases the cells' accumulation and proliferation. Consequently, tailoring the porosity of microgels in an effortless way is important but still challenging, especially for nonspherical microgels. This work presents a straightforward procedure to fabricate complex-shaped poly(N-isopropyl acrylamide) (PNIPAM) microgels with tuned porous structures using the so-called cononsolvency effect during microgel polymerization. Therefore, the classical solvent in the reaction solution is exchanged from water to water-methanol mixtures in a stop-flow lithography process. For cylindrical microgels with a higher methanol content during fabrication, a greater degree of collapsing is observed, and their aspect ratio increases. Furthermore, the collapsing and swelling velocities change with the methanol content, indicating a modified porous structure, which is confirmed by electron microscopy micrographs. Furthermore, swelling patterns of the microgel variants occur during cooling, revealing their thermal response as a highly heterogeneous process. These results show a novel procedure to fabricate PNIPAM microgels of any elongated 2D shape with tailored porous structure and thermoresponsiveness by introducing the cononsolvency effect during stop-flow lithography polymerization.

2.
Adv Healthc Mater ; 10(20): e2100898, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34331524

RESUMEN

For successful material deployment in tissue engineering, the material itself, its mechanical properties, and the microscopic geometry of the product are of particular interest. While silk is a widely applied protein-based tissue engineering material with strong mechanical properties, the size and shape of artificially spun silk fibers are limited by existing processes. This study adjusts a microfluidic spinneret to manufacture micron-sized wet-spun fibers with three different materials enabling diverse geometries for tissue engineering applications. The spinneret is direct laser written (DLW) inside a microfluidic polydimethylsiloxane (PDMS) chip using two-photon lithography, applying a novel surface treatment that enables a tight print-channel sealing. Alginate, polyacrylonitrile, and silk fibers with diameters down to 1 µm are spun, while the spinneret geometry controls the shape of the silk fiber, and the spinning process tailors the mechanical property. Cell-cultivation experiments affirm bio-compatibility and showcase an interplay between the cell-sized fibers and cells. The presented spinning process pushes the boundaries of fiber fabrication toward smaller diameters and more complex shapes with increased surface-to-volume ratio and will substantially contribute to future tailored tissue engineering materials for healthcare applications.


Asunto(s)
Microfluídica , Seda , Ingeniería de Tejidos
3.
Biosens Bioelectron ; 165: 112345, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32513645

RESUMEN

We describe an impedance-based method for cell barrier integrity testing. A four-electrode electrical impedance spectroscopy (EIS) setup can be realized by simply connecting a commercial chopstick-like electrode (STX-1) to a potentiostat allowing monitoring cell barriers cultivated in transwell inserts. Subsequent electric circuit modeling of the electrical impedance results the capacitive properties of the barrier next to the well-known transepithelial electrical resistance (TEER). The versatility of the new method was analyzed by the EIS analysis of a Caco-2 monolayer in response to (a) different membrane coating materials, (b) two different permeability enhancers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and saponin, and (c) sonoporation. For the different membrane coating materials, the TEERs of the standard and new protocol coincide and increase during cultivation, while the capacitance shows a distinct maximum for three different surface materials (no coating, Matrigel®, and collagen I). The permeability enhancers cause a decline in the TEER value, but only saponin alters the capacitance of the cell layer by two orders of magnitude. Hence, cell layer capacitance and TEER represent two independent properties characterizing the monolayer. The use of commercial chopstick-like electrodes to access the impedance of a barrier cultivated in transwell inserts enables remarkable insight into the behavior of the cellular barrier with no extra work for the researcher. This simple method could evolve into a standard protocol used in cell barrier research.


Asunto(s)
Técnicas Biosensibles , Espectroscopía Dieléctrica , Células CACO-2 , Impedancia Eléctrica , Células Epiteliales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA