Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
NPJ Biofilms Microbiomes ; 10(1): 33, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553475

RESUMEN

Host-associated microbiota are critical for eukaryotic host functioning, to the extent that hosts and their associated microbial communities are often considered "holobionts". Most studies of holobionts have focused on descriptive approaches or have used model systems, usually in the laboratory, to understand host-microbiome interactions. To advance our understanding of host-microbiota interactions and their wider ecological impacts, we need experimental frameworks that can explore causation in non-model hosts, which often have highly diverse microbiota, and in their natural ecological setting (i.e. in the field). We used a dominant habitat-forming seaweed, Hormosira banksii, to explore these issues and to experimentally test host-microbiota interactions in a non-model holobiont. The experimental protocols were aimed at trying to disentangle microbially mediated effects on hosts from direct effects on hosts associated with the methods employed to manipulate host-microbiota. This was done by disrupting the microbiome, either through removal/disruption using a combination of antimicrobial treatments, or additions of specific taxa via inoculations, or a combination of thew two. The experiments were done in mesocosms and in the field. Three different antibiotic treatments were used to disrupt seaweed-associated microbiota to test whether disturbances of microbiota, particularly bacteria, would negatively affect host performance. Responses of bacteria to these disturbances were complex and differed substantially among treatments, with some antibacterial treatments having little discernible effect. However, the temporal sequence of responses antibiotic treatments, changes in bacterial diversity and subsequent decreases in host performance, strongly suggested an effect of the microbiota on host performance in some treatments, as opposed to direct effects of the antibiotics. To further test these effects, we used 16S-rRNA-gene sequencing to identify bacterial taxa that were either correlated, or uncorrelated, with poor host performance following antibiotic treatment. These were then isolated and used in inoculation experiments, independently or in combination with the previously used antibiotic treatments. Negative effects on host performance were strongest where specific microbial antimicrobials treatments were combined with inoculations of strains that were correlated with poor host performance. For these treatments, negative host effects persisted the entire experimental period (12 days), even though treatments were only applied at the beginning of the experiment. Host performance recovered in all other treatments. These experiments provide a framework for exploring causation and disentangling microbially mediated vs. direct effects on hosts for ecologically important, non-model holobionts in the field. This should allow for better predictions of how these systems will respond to, and potentially mitigate, environmental disturbances in their natural context.


Asunto(s)
Microbiota , Microbiota/fisiología , Bacterias/genética , Interacciones Microbiota-Huesped , Antibacterianos
3.
Mol Ecol ; 32(16): 4584-4598, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37332135

RESUMEN

A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.


Asunto(s)
Kelp , Microbiota , Humanos , Kelp/genética , Microbiota/genética , Genotipo
5.
Nat Commun ; 14(1): 1894, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072389

RESUMEN

While marine kelp forests have provided valuable ecosystem services for millennia, the global ecological and economic value of those services is largely unresolved. Kelp forests are diminishing in many regions worldwide, and efforts to manage these ecosystems are hindered without accurate estimates of the value of the services that kelp forests provide to human societies. Here, we present a global estimate of the ecological and economic potential of three key ecosystem services - fisheries production, nutrient cycling, and carbon removal provided by six major forest forming kelp genera (Ecklonia, Laminaria, Lessonia, Macrocystis, Nereocystis, and Saccharina). Each of these genera creates a potential value of between $64,400 and $147,100/hectare each year. Collectively, they generate between $465 and $562 billion/year worldwide, with an average of $500 billion. These values are primarily driven by fisheries production (mean $29,900, 904 Kg/Ha/year) and nitrogen removal ($73,800, 657 Kg N/Ha/year), though kelp forests are also estimated to sequester 4.91 megatons of carbon from the atmosphere/year highlighting their potential as blue carbon systems for climate change mitigation. These findings highlight the ecological and economic value of kelp forests to society and will facilitate better informed marine management and conservation decisions.


Asunto(s)
Ecosistema , Kelp , Humanos , Bosques , Cambio Climático , Carbono
6.
Microbiology (Reading) ; 168(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35416764

RESUMEN

Antarctic sea-ice forms a complex and dynamic system that drives many ecological processes in the Southern Ocean. Sea-ice microalgae and their associated microbial communities are understood to influence nutrient flow and allocation in marine polar environments. Sea-ice microalgae and their microbiota can have high seasonal and regional (>1000 km2) compositional and abundance variation, driven by factors modulating their growth, symbiotic interactions and function. In contrast, our knowledge of small-scale variation in these communities is limited. Understanding variation across multiple scales and its potential drivers is critical for informing on how multiple stressors impact sea-ice communities and the functions they provide. Here, we characterized bacterial communities associated with sea-ice microalgae and the potential drivers that influence their variation across a range of spatial scales (metres to >10 kms) in a previously understudied area in Commonwealth Bay, East Antarctica where anomalous events have substantially and rapidly expanded local sea-ice coverage. We found a higher abundance and different composition of bacterial communities living in sea-ice microalgae closer to the shore compared to those further from the coast. Variation in community structure increased linearly with distance between samples. Ice thickness and depth to the seabed were found to be poor predictors of these communities. Further research on the small-scale environmental drivers influencing these communities is needed to fully understand how large-scale regional events can affect local function and ecosystem processes.


Asunto(s)
Microalgas , Microbiota , Regiones Antárticas , Bahías , Ecosistema , Cubierta de Hielo
7.
Biol Rev Camb Philos Soc ; 97(4): 1449-1475, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35255531

RESUMEN

Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. Moreover, a small subset of these efforts are 'afforestation', which focuses on creating new kelp habitat, as opposed to restoring kelp where it previously existed. To distil lessons learned over the last 300 years of kelp restoration, we review the history of kelp restoration (including afforestation) around the world and synthesise the results of 259 documented restoration attempts spanning from 1957 to 2020, across 16 countries, five languages, and multiple user groups. Our results show that kelp restoration projects have increased in frequency, have employed 10 different methodologies and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 ha (80%) and took place over time spans of less than 2 years. We show that projects are most successful when they are located near existing kelp forests. Further, disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, therefore we explore avenues to reduce these costs and suggest financial and legal pathways for scaling up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analysing existing data, and providing updated information. Our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental , Kelp , Animales , Cadena Alimentaria , Kelp/fisiología , Erizos de Mar/fisiología
8.
Mol Ecol ; 31(7): 2189-2206, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104026

RESUMEN

Interactions between hosts and their microbiota are vital to the functioning and resilience of macro-organisms. Critically, for hosts that play foundational roles in communities, understanding what drives host-microbiota interactions is essential for informing ecosystem restoration and conservation. We investigated the relative influence of host traits and the surrounding environment on microbial communities associated with the foundational seaweed Phyllospora comosa. We quantified 16 morphological and functional phenotypic traits, including host genetics (using 354 single nucleotide polymorphisms) and surface-associated microbial communities (using 16S rRNA gene amplicon sequencing) from 160 individuals sampled from eight sites spanning Phyllospora's entire latitudinal distribution (1,300 km). Combined, these factors explained 54% of the overall variation in Phyllospora's associated microbial community structure, much of which was related to the local environment (~32%). We found that putative "core" microbial taxa (i.e., present on all Phyllospora individuals sampled) exhibited slightly higher associations with host traits when compared to "variable" taxa (not present on all individuals). We identified several key genetic loci and phenotypic traits in Phyllospora that were strongly related to multiple microbial amplicon sequence variants, including taxa with known associations to seaweed defence, disease and tissue degradation. This information on how host-associated microbial communities vary with host traits and the environment enhances our current understanding of how "holobionts" (hosts plus their microbiota) are structured. Such understanding can be used to inform management strategies of these important and vulnerable habitats.


Asunto(s)
Microbiota , Phaeophyceae , Algas Marinas , Geografía , Microbiota/genética , Phaeophyceae/genética , Fenotipo , ARN Ribosómico 16S/genética , Algas Marinas/genética
9.
Conserv Biol ; 36(2): e13815, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34342040

RESUMEN

Preserving biodiversity over time is a pressing challenge for conservation science. A key goal of marine protected areas (MPAs) is to maintain stability in species composition, via reduced turnover, to support ecosystem function. Yet, this stability is rarely measured directly under different levels of protection. Rather, evaluations of MPA efficacy generally consist of static measures of abundance, species richness, and biomass, and rare measures of turnover are limited to short-term studies involving pairwise (beta diversity) comparisons. Zeta diversity is a recently developed metric of turnover that allows for measurement of compositional similarity across multiple assemblages and thus provides more comprehensive estimates of turnover. We evaluated the effectiveness of MPAs at preserving fish zeta diversity across a network of marine reserves over 10 years in Batemans Marine Park, Australia. Snorkel transect surveys were conducted across multiple replicated and spatially interspersed sites to record fish species occurrence through time. Protection provided by MPAs conferred greater stability in fish species turnover. Marine protected areas had significantly shallower decline in zeta diversity compared with partially protected and unprotected areas. The retention of harvested species was four to six times greater in MPAs compared with partially protected and unprotected areas, and the stabilizing effects of protection were observable within 4 years of park implementation. Conversely, partial protection offered little to no improvement in stability, compared with unprotected areas. These findings support the efficacy of MPAs for preserving temporal fish diversity stability. The implementation of MPAs helps stabilize fish diversity and may, therefore, support biodiversity resilience under ongoing environmental change.


Impactos de las Áreas Protegidas Marinas sobre la Estabilidad Temporal de la Diversidad de Especies de Peces Resumen A medida que avanza el tiempo, la conservación de la biodiversidad es un reto apremiante para las ciencias de la conservación. Un objetivo importante de las áreas marinas protegidas (AMP) es mantener la estabilidad de la composición de especies, por medio de rotaciones reducidas, para así ayudar a la función del ecosistema. Sin embargo, esta estabilidad casi no se mide directamente bajo diferentes niveles de protección. En su lugar, las evaluaciones de eficiencia de las AMP generalmente consisten en medidas estáticas de abundancia, riqueza de especies y biomasa, y las pocas medidas de la rotación están limitadas a los estudios a corto plazo que involucran comparaciones por pares (diversidad beta). La diversidad zeta es una medida recientemente desarrollada de la rotación, la cual permite la medición de las similitudes en la composición en múltiples ensamblajes, proporcionando así estimaciones más completas de la rotación. Evaluamos la efectividad que tienen las AMP en la conservación de la diversidad zeta de los peces en una red de reservas marinas durante diez años en el Parque Marino Bateman, Australia. Se realizaron censos en transecto con snorkel en varios sitios replicados e intercalados espacialmente para registrar la presencia de especies de peces a lo largo del tiempo. La protección proporcionada por las AMP otorgó una mayor estabilidad en la rotación de especies de peces. Las áreas marinas protegidas tuvieron una declinación significativamente más baja de la diversidad zeta que las áreas parcialmente protegidas o desprotegidas. La retención de especies pescadas fue 4-6 veces mayor en las AMP que en las áreas desprotegidas o parcialmente protegidas, y los efectos estabilizadores de la protección fueron observables a partir de cuatro años de la implementación del parque. De manera opuesta, la protección parcial ofreció poca o ninguna estabilidad, comparada con las áreas desprotegidas. Estos descubrimientos respaldan la eficiencia que tienen las AMP en la conservación de la estabilidad temporal de la diversidad de especies de peces. La implementación de las AMP ayuda a estabilizar la diversidad de peces y por lo tanto puede fomentar la resiliencia de la biodiversidad frente al cambio ambiental en curso.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Australia , Biodiversidad , Peces
10.
Front Microbiol ; 12: 661177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690940

RESUMEN

Coastal systems such as estuaries are threatened by multiple anthropogenic stressors worldwide. However, how these stressors and estuarine hydrology shape benthic bacterial communities and their functions remains poorly known. Here, we surveyed sediment bacterial communities in poorly flushed embayments and well flushed channels in Sydney Harbour, Australia, using 16S rRNA gene sequencing. Sediment samples were collected monthly during the Austral summer-autumn 2014 at increasing distance from a large storm drain in each channel and embayment. Bacterial communities differed significantly between sites that varied in proximity to storm drains, with a gradient of change apparent for sites within embayments. We explored this pattern for embayment sites with analysis of RNA-Seq gene expression patterns and found higher expression of multiple genes involved in bacterial stress response far from storm drains, suggesting that bacterial communities close to storm drains may be more tolerant of localised anthropogenic stressors. Several bacterial groups also differed close to and far from storm drains, suggesting their potential utility as bioindicators to monitor contaminants in estuarine sediments. Overall, our study provides useful insights into changes in the composition and functioning of benthic bacterial communities as a result of multiple anthropogenic stressors in differing hydrological conditions.

11.
FEMS Microbiol Ecol ; 97(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34156064

RESUMEN

Epiphytic microbial communities often have a close relationship with their eukaryotic host, assisting with defence, health, disease prevention and nutrient transfer. Shifts in the structure of microbial communities could therefore have negative effects on the individual host and indirectly impact the surrounding ecosystem, particularly for major habitat-forming hosts, such as kelps in temperate rocky shores. Thus, an understanding of the structure and dynamics of host-associated microbial communities is essential for monitoring and assessing ecosystem changes. Here, samples were taken from the ecologically important kelp, Ecklonia radiata, over a 17-month period, from six different sites in two distinct geographic regions (East and West coasts of Australia), separated by ∼3,300 kms, to understand variation in the kelp bacterial community and its potential environmental drivers. Differences were observed between kelp bacterial communities between the largely disconnected geographical regions. In contrast, within each region and over time the bacterial communities were considerably more stable, despite substantial seasonal changes in environmental conditions.


Asunto(s)
Kelp , Microbiota , Australia , Bacterias/genética , Ecosistema
12.
Glob Chang Biol ; 27(11): 2537-2548, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33694271

RESUMEN

Climate-mediated species redistributions are causing novel interactions and leading to profound regime shifts globally. For species that expand their distribution in response to warming, survival depends not only on their physiological capacity, but also on the ability to coexist or be competitive within the established community. In temperate marine reefs from around the world, the range expansion of tropical species, known as 'tropicalization', has been linked to the disappearance of temperate habitat-forming kelps and shifts to dominance by low-biomass turfing algae. The consequences of these range expansions and habitat changes on resident fish communities are, however, unclear. Here, we use data derived from baited remote underwater video (BRUV) surveys to analyse changes in diversity and abundance of marine fishes over a 17-year period in warming reefs that have experienced kelp loss (occurring c. 2009). Despite the loss of kelp, we found that species richness and overall abundance of fishes (measured as probability of occurrence and relative abundance), including both tropical and temperate species, increased through time. We also found dramatic shifts in the trophic composition of fish assemblages. Tropical herbivorous fish increased most markedly through time, and temperate-associated planktivores were the only group that declined, a potential consequence of tropicalization not previously identified. At the species level, we identified 22 tropical and temperate species from four trophic guilds that significantly increased in occurrence, while only three species (all temperate associated) declined. Morphological trait space models suggest increases in fish diversity and overall occurrence are unlikely to be driven by uniqueness of traits among tropical range expanders. Our results show more winners than losers and suggest that pathways of energy flow will change in tropicalized systems, as planktonic inputs become less important and a higher proportion of algal productivity gets consumed locally by increasingly abundant herbivores.


Asunto(s)
Kelp , Animales , Biomasa , Arrecifes de Coral , Ecosistema , Peces , Herbivoria
13.
ISME J ; 15(3): 807-817, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33558686

RESUMEN

Horizontal gene transfer (HGT) is thought to be an important driving force for microbial evolution and niche adaptation and has been show in vitro to occur frequently in biofilm communities. However, the extent to which HGT takes place and what functions are being transferred in more complex and natural biofilm systems remains largely unknown. To address this issue, we investigated here HGT and enrichment of gene functions in the biofilm community of the common kelp (macroalgae) Ecklonia radiata in comparison to microbial communities in the surrounding seawater. We found that HGTs in the macroalgal biofilms were dominated by transfers between bacterial members of the same class or order and frequently involved genes for nutrient transport, sugar and phlorotannin degradation as well as stress responses, all functions that would be considered beneficial for bacteria living in this particular niche. HGT did not appear to be driven by mobile gene elements, indicating rather an involvement of unspecific DNA uptake (e.g. natural transformation). There was also a low overlap between the gene functions subject to HGT and those enriched in the biofilm community in comparison to planktonic community members. This indicates that much of the functionality required for bacteria to live in an E. radiata biofilm might be derived from vertical or environmental transmissions of symbionts. This study enhances our understanding of the relative role of evolutionary and ecological processes in driving community assembly and genomic diversity of biofilm communities.


Asunto(s)
Transferencia de Gen Horizontal , Algas Marinas , Bacterias/genética , Biopelículas , Plancton
14.
Glob Chang Biol ; 27(10): 2200-2212, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33511779

RESUMEN

Globally, critical habitats are in decline, threatening ecological, economic and social values and prompting calls for 'future proofing' efforts that enhance resilience to climate change. Such efforts rely on predicting how neutral and adaptive genomic patterns across a species' distribution will change under future climate scenarios, but data is scant for most species of conservation concern. Here, we use seascape genomics to characterise genetic diversity, structure and gene-environmental associations in a dominant forest-forming seaweed, Phyllospora comosa, along its entire latitudinal (12° latitude), and thermal (~14°C) range. Phyllospora showed high connectivity throughout its central range, with evidence of genetic structure and potential selection associated with sea surface temperatures (SSTs) at its rear and leading edges. Rear and leading-edge populations harboured only half the genetic diversity of central populations. By modelling genetic turnover as a function of SST, we assessed the genomic vulnerability across Phyllospora's distributional range under climate change scenarios. Despite low diversity, range-edge populations were predicted to harbour beneficial adaptations to marginal conditions and overall adaptability of the species may be compromised by their loss. Assisted gene flow from range edge populations may be required to enhance adaptation and increase resilience of central and leading-edge populations under warming oceans. Understanding genomic vulnerability can inform proactive restoration and future-proofing strategies for underwater forests and ensure their persistence in changing oceans.


Asunto(s)
Algas Marinas , Australia , Cambio Climático , Bosques , Genómica , Océanos y Mares
15.
Ann Rev Mar Sci ; 13: 445-477, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32867567

RESUMEN

Urban and periurban ocean developments impact 1.5% of the global exclusive economic zones, and the demand for ocean space and resources is increasing. As we strive for a more sustainable future, it is imperative that we better design, manage, and conserve urban ocean spaces for both humans and nature. We identify three key objectives for more sustainable urban oceans: reduction of urban pressures, protection and restoration of ocean ecosystems, and support of critical ecosystem services. We describe an array of emerging evidence-based approaches, including greening grayinfrastructure, restoring habitats, and developing biotechnologies. We then explore new economic instruments and incentives for supporting these new approaches and evaluate their feasibility in delivering these objectives. Several of these tools have the potential to help bring nature back to the urban ocean while also addressing some of the critical needs of urban societies, such as climate adaptation, seafood production, clean water, and recreation, providing both human and environmental benefits in some of our most impacted ocean spaces.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Urbanización , Animales , Acuicultura/organización & administración , Organismos Acuáticos/crecimiento & desarrollo , Biodegradación Ambiental , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/tendencias , Ecosistema , Humanos , Océanos y Mares , Agua de Mar/química , Desarrollo Sostenible , Contaminación del Agua/prevención & control
16.
Mar Pollut Bull ; 160: 111578, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32911113

RESUMEN

Recent studies have suggested that increasing habitat complexity of artificial seawalls by modifying surface heterogeneity could enhance exploitable habitat and therefore species richness and abundance. We tested the effects of adding complex tiles (with crevices/ledges) of different heterogeneity (i.e., flat tiles resembling the seawall vs. tiles with crevices of 2.5 cm or 5.0 cm depth) and seeding with native rock oysters, Saccostrea cuccullata (unseeded vs. seeded) on species richness and abundances of intertidal marine organisms on two vertical seawalls in Hong Kong. Tiles were affixed to the mid-intertidal zone of the seawalls for 12 months. The results showed that the tiles with crevices had greater species richness and cover of sessile epifauna than flat tiles. Seeding tiles with S. cuccullata also facilitated natural recruitment of the same species. Our results support the hypothesis that using eco-engineering to increase habitat complexity can enhance the biodiversity of intertidal marine organisms on seawalls.


Asunto(s)
Biodiversidad , Refugio de Fauna , Animales , Organismos Acuáticos , Ecosistema , Hong Kong
17.
Sci Rep ; 10(1): 809, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964928

RESUMEN

Ecological differentiation between strains of bacterial species is shaped by genomic and metabolic variability. However, connecting genotypes to ecological niches remains a major challenge. Here, we linked bacterial geno- and phenotypes by contextualizing pangenomic, exometabolomic and physiological evidence in twelve strains of the marine bacterium Alteromonas macleodii, illuminating adaptive strategies of carbon metabolism, microbial interactions, cellular communication and iron acquisition. In A. macleodii strain MIT1002, secretion of amino acids and the unique capacity for phenol degradation may promote associations with Prochlorococcus cyanobacteria. Strain 83-1 and three novel Pacific isolates, featuring clonal genomes despite originating from distant locations, have profound abilities for algal polysaccharide utilization but without detrimental implications for Ecklonia macroalgae. Degradation of toluene and xylene, mediated via a plasmid syntenic to terrestrial Pseudomonas, was unique to strain EZ55. Benzoate degradation by strain EC673 related to a chromosomal gene cluster shared with the plasmid of A. mediterranea EC615, underlining that mobile genetic elements drive adaptations. Furthermore, we revealed strain-specific production of siderophores and homoserine lactones, with implications for nutrient acquisition and cellular communication. Phenotypic variability corresponded to different competitiveness in co-culture and geographic distribution, indicating linkages between intraspecific diversity, microbial interactions and biogeography. The finding of "ecological microdiversity" helps understanding the widespread occurrence of A. macleodii and contributes to the interpretation of bacterial niche specialization, population ecology and biogeochemical roles.


Asunto(s)
Alteromonas/fisiología , Adaptación Biológica , Alteromonas/metabolismo , Variación Biológica Poblacional , Ecosistema , Ecotipo , Variación Genética , Genoma Bacteriano , Hierro/metabolismo , Océano Pacífico , Filogenia , Plásmidos , Polisacáridos/metabolismo , Prochlorococcus/fisiología , Agua de Mar/microbiología , Algas Marinas/metabolismo , Metabolismo Secundario
18.
Nat Ecol Evol ; 3(11): 1509-1520, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31636428

RESUMEN

Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microorganisms in ecosystem function. This is particularly relevant in ocean environments, where microorganisms constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (for example, fisheries and water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the 'microbiome') and the environment or their hosts - termed the 'holobiont'. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here, we evaluate the current state of knowledge on coastal marine microbiome research and identify key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research.


Asunto(s)
Microbiota , Clima , Explotaciones Pesqueras , Humanos
19.
Ecology ; 100(11): e02832, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31323117

RESUMEN

Incidence, or compositional, matrices are generated for a broad range of research applications in biology. Zeta diversity provides a common currency and conceptual framework that links incidence-based metrics with multiple patterns of interest in biology, ecology, and biodiversity science. It quantifies the variation in species (or OTU) composition of multiple assemblages (or cases) in space or time, to capture the contribution of the full suite of narrow, intermediate, and wide-ranging species to biotic heterogeneity. Here we provide a conceptual framework for the application and interpretation of patterns of continuous change in compositional diversity using zeta diversity. This includes consideration of the survey design context, and the multiple ways in which zeta diversity decline and decay can be used to examine and test turnover in the identity of elements across space and time. We introduce the zeta ratio-based retention rate curve to quantify rates of compositional change. We illustrate these applications using 11 empirical data sets from a broad range of taxa, scales, and levels of biological organization-from DNA molecules and microbes to communities and interaction networks-including one of the original data sets used to express compositional change and distance decay in ecology. We show (1) how different sample selection schemes used during the calculation of compositional change are appropriate for different data types and questions, (2) how higher orders of zeta may in some cases better detect shifts and transitions, and (3) the relative roles of rare vs. common species in driving patterns of compositional change. By exploring the application of zeta diversity decline and decay, including the retention rate, across this broad range of contexts, we demonstrate its application for understanding continuous turnover in biological systems.


Asunto(s)
Biodiversidad , Ecología , Estudios Longitudinales
20.
Proc Biol Sci ; 286(1896): 20181887, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963929

RESUMEN

Climate change is driving global declines of marine habitat-forming species through physiological effects and through changes to ecological interactions, with projected trajectories for ocean warming and acidification likely to exacerbate such impacts in coming decades. Interactions between habitat-formers and their microbiomes are fundamental for host functioning and resilience, but how such relationships will change in future conditions is largely unknown. We investigated independent and interactive effects of warming and acidification on a large brown seaweed, the kelp Ecklonia radiata, and its associated microbiome in experimental mesocosms. Microbial communities were affected by warming and, during the first week, by acidification. During the second week, kelp developed disease-like symptoms previously observed in the field. The tissue of some kelp blistered, bleached and eventually degraded, particularly under the acidification treatments, affecting photosynthetic efficiency. Microbial communities differed between blistered and healthy kelp for all treatments, except for those under future conditions of warming and acidification, which after two weeks resembled assemblages associated with healthy hosts. This indicates that changes in the microbiome were not easily predictable as the severity of future climate scenarios increased. Future ocean conditions can change kelp microbiomes and may lead to host disease, with potentially cascading impacts on associated ecosystems.


Asunto(s)
Cambio Climático , Kelp/fisiología , Microbiota , Agua de Mar/química , Ecosistema , Calentamiento Global , Concentración de Iones de Hidrógeno , Kelp/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...