Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 11(539)2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018083

RESUMEN

G protein receptor kinases (GRKs) and ß-arrestins are key regulators of µ-opioid receptor (MOR) signaling and trafficking. We have previously shown that high-efficacy opioids such as DAMGO stimulate a GRK2/3-mediated multisite phosphorylation of conserved C-terminal tail serine and threonine residues, which facilitates internalization of the receptor. In contrast, morphine-induced phosphorylation of MOR is limited to Ser375 and is not sufficient to drive substantial receptor internalization. We report how specific multisite phosphorylation controlled the dynamics of GRK and ß-arrestin interactions with MOR and show how such phosphorylation mediated receptor desensitization. We showed that GRK2/3 was recruited more quickly than was ß-arrestin to a DAMGO-activated MOR. ß-Arrestin recruitment required GRK2 activity and MOR phosphorylation, but GRK recruitment also depended on the phosphorylation sites in the C-terminal tail, specifically four serine and threonine residues within the 370TREHPSTANT379 motif. Our results also suggested that other residues outside this motif participated in the initial and transient recruitment of GRK and ß-arrestins. We identified two components of high-efficacy agonist desensitization of MOR: a sustained component, which required GRK2-mediated phosphorylation and a potential soluble factor, and a rapid component, which was likely mediated by GRK2 but independent of receptor phosphorylation. Elucidating these complex receptor-effector interactions represents an important step toward a mechanistic understanding of MOR desensitization that leads to the development of tolerance and dependence.


Asunto(s)
Arrestinas/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Regulación de la Expresión Génica , Receptores Opioides mu/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Analgésicos Opioides/farmacología , Arrestinas/química , Quinasa 2 del Receptor Acoplado a Proteína-G/química , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación/efectos de los fármacos , Receptores Opioides mu/agonistas , Homología de Secuencia , Serina/genética , Serina/metabolismo , Transducción de Señal , Treonina/genética , Treonina/metabolismo
2.
Br J Pharmacol ; 175(14): 2857-2868, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28378462

RESUMEN

Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the µ-opioid receptor (µ receptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptor (κ receptor), δ-opioid receptor (δ receptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor). Currently, a new generation of opioid analgesics is being developed that can simultaneously bind with high affinity to multiple opioid receptors. With this new action profile, it is hoped that additional analgesic effects and fewer side effects can be achieved. Recent research is mainly focused on the development of bifunctional µ/NOP receptor agonists, which has already led to novel lead structures such as the spiroindole-based cebranopadol and a compound class with a piperidin-4-yl-1,3-dihydroindol-2-one backbone (SR16835/AT-202 and SR14150/AT-200). In addition, the ornivol BU08028 is an analogue of the clinically well-established buprenorphine. Moreover, the morphinan-based nalfurafine exerts its effect with a dominant κ receptor-component and is therefore utilized in the treatment of pruritus. The very potent dihydroetorphine is a true multi-receptor opioid ligand in that it binds to µ, κ and δ receptors. The main focus of this review is to assess the paradigm of opioid ligands targeting multiple receptors with a single chemical entity. We reflect on this rationale by discussing the biological actions of particular multi-opioid receptor ligands, but not on their medicinal chemistry and design. LINKED ARTICLES: This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides/metabolismo , Analgésicos Opioides/uso terapéutico , Animales , Humanos , Dolor/tratamiento farmacológico
4.
J Control Release ; 224: 59-68, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26763375

RESUMEN

Cell fate decisions in many physiological processes, including embryogenesis, stem cell niche homeostasis and wound healing, are regulated by secretion of small signaling proteins, called cytokines, from source cells to their neighbors or into the environment. Concentration level and steepness of the resulting paracrine gradients elicit different cell responses, including proliferation, differentiation or chemotaxis. For an in-depth analysis of underlying mechanisms, in vitro models are required to mimic in vivo cytokine gradients. We set up a microparticle-based system to establish short-range cytokine gradients in a three-dimensional extracellular matrix context. To provide native binding sites for cytokines, agarose microparticles were functionalized with different glycosaminoglycans (GAG). After protein was loaded onto microparticles, its slow release was quantified by confocal microscopy and fluorescence correlation spectroscopy. Besides the model protein lysozyme, SDF-1 was used as a relevant chemokine for hematopoietic stem and progenitor cell (HSPC) chemotaxis. For both proteins we found gradients ranging up to 50µm from the microparticle surface and concentrations in the order of nM to pM in dependence on loading concentration and affinity modulation by the GAG functionalization. Directed chemotactic migration of cells from a hematopoietic cell line (FDCPmix) and primary murine HSPC (Sca-1(+) CD150(+) CD48(-)) toward the SDF-1-laden microparticles proved functional short-range gradients in a two-dimensional and three-dimensional setting over time periods of many hours. The approach has the potential to be applied to other cytokines mimicking paracrine cell-cell interactions in vitro.


Asunto(s)
Citocinas/metabolismo , Comunicación Paracrina , Algoritmos , Animales , Comunicación Celular , Línea Celular , Quimiocina CXCL12/administración & dosificación , Quimiotaxis/efectos de los fármacos , Matriz Extracelular/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Muramidasa/análisis , Nanopartículas , Células Madre/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...