Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 294(3): 1035-1044, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30478175

RESUMEN

The nematode mutualistic bacterium Photorhabdus asymbiotica produces a large virulence-associated multifunctional protein toxin named PaTox. A glycosyltransferase domain and a deamidase domain of this large toxin function as effectors that specifically target host Rho GTPases and heterotrimeric G proteins, respectively. Modification of these intracellular regulators results in toxicity toward insects and mammalian cells. In this study, we identified a cysteine protease-like domain spanning PaTox residues 1844-2114 (PaToxP), upstream of these two effector domains and characterized by three conserved amino acid residues (Cys-1865, His-1955, and Asp-1975). We determined the crystal structure of the PaToxP C1865A variant by native single-wavelength anomalous diffraction of sulfur atoms (sulfur-SAD). At 2.0 Å resolution, this structure revealed a catalytic site typical for papain-like cysteine proteases, comprising a catalytic triad, oxyanion hole, and typical secondary structural elements. The PaToxP structure had highest similarity to that of the AvrPphB protease from Pseudomonas syringae classified as a C58-protease. Furthermore, we observed that PaToxP shares structural homology also with non-C58-cysteine proteases, deubiquitinases, and deamidases. Upon delivery into insect larvae, PaToxP alone without full-length PaTox had no toxic effects. Yet, PaToxP expression in mammalian cells was toxic and enhanced the apoptotic phenotype induced by PaTox in HeLa cells. We propose that PaToxP is a C58-like cysteine protease module that is essential for full PaTox activity.


Asunto(s)
Toxinas Bacterianas/química , Proteasas de Cisteína/química , Photorhabdus/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Photorhabdus/genética , Photorhabdus/metabolismo , Dominios Proteicos
2.
Naunyn Schmiedebergs Arch Pharmacol ; 392(1): 69-79, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30225797

RESUMEN

Legionella pneumophila glucosyltransferase SetA, which is introduced into target cells by a type IV secretion system, affects the intracellular traffic of host cells. Here, we characterized the enzyme activity of the Legionella effector. We report that Asp118 and Arg121 of SetA are essential for glucohydrolase and glucotransferase activities. Exchange of Trp36 to alanine reduced the enzyme activity of SetA. All three amino acids were crucial for the cytotoxic effects of SetA in yeast. We observed that phosphatidylinositol-3-phosphate (PI3P) increased the glucosyltransferase activity of SetA severalfold, while the glucohydrolase activity was not affected. In the presence of PI3P, we observed the glucosylation of actin, vimentin and the chaperonin CCT5 in the cytosolic fraction of target cells. Studies on the functional consequences of glucosylation of skeletal muscle α-actin in vitro revealed inhibition of actin polymerization by glucosylation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Legionella pneumophila/enzimología , Fosfatos de Fosfatidilinositol/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Proteínas Bacterianas/genética , Células CHO , Cricetulus , Escherichia coli/genética , Glucosiltransferasas/genética , Humanos , Células Jurkat , Mutagénesis Sitio-Dirigida , Fosfatos de Fosfatidilinositol/genética , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 115(38): 9580-9585, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181275

RESUMEN

Various bacterial protein toxins, including Clostridium difficile toxins A (TcdA) and B (TcdB), attack intracellular target proteins of host cells by glucosylation. After receptor binding and endocytosis, the toxins are translocated into the cytosol, where they modify target proteins (e.g., Rho proteins). Here we report that the activity of translocated glucosylating toxins depends on the chaperonin TRiC/CCT. The chaperonin subunits CCT4/5 directly interact with the toxins and enhance the refolding and restoration of the glucosyltransferase activities of toxins after heat treatment. Knockdown of CCT5 by siRNA and HSF1A, an inhibitor of TRiC/CCT, blocks the cytotoxic effects of TcdA and TcdB. In contrast, HSP90, which is involved in the translocation and uptake of ADP ribosylating toxins, is not involved in uptake of the glucosylating toxins. We show that the actions of numerous glycosylating toxins from various toxin types and different species depend on TRiC/CCT. Our data indicate that the TRiC/CCT chaperonin system is specifically involved in toxin uptake and essential for the action of various glucosylating protein toxins acting intracellularly on target proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Chaperonina con TCP-1/metabolismo , Clostridioides difficile/fisiología , Enterotoxinas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Animales , Chaperonina con TCP-1/antagonistas & inhibidores , Chaperonina con TCP-1/genética , Clostridioides difficile/patogenicidad , Citosol/metabolismo , Fibroblastos , Técnicas de Silenciamiento del Gen , Glicosilación , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Ratones , ARN Interferente Pequeño/metabolismo
4.
Nat Commun ; 6: 7807, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26190758

RESUMEN

Yersinia species cause zoonotic infections, including enterocolitis and plague. Here we studied Yersinia ruckeri antifeeding prophage 18 (Afp18), the toxin component of the phage tail-derived protein translocation system Afp, which causes enteric redmouth disease in salmonid fish species. Here we show that microinjection of the glycosyltransferase domain Afp18(G) into zebrafish embryos blocks cytokinesis, actin-dependent motility and cell blebbing, eventually abrogating gastrulation. In zebrafish ZF4 cells, Afp18(G) depolymerizes actin stress fibres by mono-O-GlcNAcylation of RhoA at tyrosine-34; thereby Afp18(G) inhibits RhoA activation by guanine nucleotide exchange factors, and blocks RhoA, but not Rac and Cdc42 downstream signalling. The crystal structure of tyrosine-GlcNAcylated RhoA reveals an open conformation of the effector loop distinct from recently described structures of GDP- or GTP-bound RhoA. Unravelling of the molecular mechanism of the toxin component Afp18 as glycosyltransferase opens new perspectives in studies of phage tail-derived protein translocation systems, which are preserved from archaea to human pathogenic prokaryotes.


Asunto(s)
Toxinas Bacterianas/farmacología , Blastómeros/efectos de los fármacos , Citocinesis/efectos de los fármacos , Glicosiltransferasas/farmacología , Proteínas de Unión al GTP Monoméricas/efectos de los fármacos , Tirosina/efectos de los fármacos , Proteínas de Pez Cebra/efectos de los fármacos , Animales , Blastómeros/citología , Blastómeros/metabolismo , Movimiento Celular/efectos de los fármacos , Embrión no Mamífero/metabolismo , Glicosilación , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Conformación Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tirosina/metabolismo , Yersinia ruckeri , Pez Cebra , Proteínas de Pez Cebra/metabolismo
5.
FASEB J ; 29(7): 2789-802, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25782990

RESUMEN

The bacterial toxin Photorhabdus asymbiotica toxin (PaTox) modifies Rho proteins by tyrosine GlcNAcylation and heterotrimeric Gα proteins by deamidation. Inactivation of Rho proteins results in F-actin disassembly in host cells. Here, we analyzed the subcellular distribution of PaTox and show that the glycosyltransferase domain of PaTox associates with the negatively charged inner surface of the plasma membrane. Localization studies with site-directed mutants, liposome precipitation analysis, lipid overlay assays, and confocal time-lapse microscopy revealed that a patch of positively charged lysine and arginine residues located on helix α1 of the glycosyltransferase is essential for membrane attachment. Using a helix1 deletion mutant, we show that plasma membrane localization of PaTox is essential for cytotoxicity and proved this by substitution of helix1 by an N-terminal myristoylation signal peptide, which restored plasma membrane localization and cytotoxicity. Furthermore, we also show that the intracellular deamidase activity of PaTox depends on the presence of the membrane localization domain. Comparison of PaTox membrane-binding domain with the 4-helix-bundle membrane-binding domain of Pasteurella multocida toxin, Vibrio cholerae multifunctional autoprocessing repeats-in-toxin, and clostridial glucosylating toxins revealed similar spatial geometry and charge distribution but different structural topology, indicating convergent evolution of toxin domains for optimized host target interaction.


Asunto(s)
Toxinas Bacterianas/toxicidad , Photorhabdus/patogenicidad , Secuencia de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Genes Bacterianos , Células HeLa , Humanos , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfolípidos/metabolismo , Photorhabdus/química , Photorhabdus/genética , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidad , Eliminación de Secuencia , Electricidad Estática , Proteínas de Unión al GTP rho/metabolismo
6.
Nat Struct Mol Biol ; 20(11): 1273-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24141704

RESUMEN

Entomopathogenic Photorhabdus asymbiotica is an emerging pathogen in humans. Here, we identified a P. asymbiotica protein toxin (PaTox), which contains a glycosyltransferase and a deamidase domain. PaTox mono-O-glycosylates Y32 (or Y34) of eukaryotic Rho GTPases by using UDP-N-acetylglucosamine (UDP-GlcNAc). Tyrosine glycosylation inhibits Rho activation and prevents interaction with downstream effectors, resulting in actin disassembly, inhibition of phagocytosis and toxicity toward insects and mammalian cells. The crystal structure of the PaTox glycosyltransferase domain in complex with UDP-GlcNAc determined at 1.8-Å resolution represents a canonical GT-A fold and is the smallest glycosyltransferase toxin known. (1)H-NMR analysis identifies PaTox as a retaining glycosyltransferase. The glutamine-deamidase domain of PaTox blocks GTP hydrolysis of heterotrimeric Gαq/11 and Gαi proteins, thereby activating RhoA. Thus, PaTox hijacks host GTPase signaling in a bidirectional manner by deamidation-induced activation and glycosylation-induced inactivation of GTPases.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Photorhabdus/enzimología , Tirosina/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Glicosilación , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...