Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938766

RESUMEN

Suicide rates have increased steadily world-wide over the past two decades, constituting a serious public health crisis that creates a significant burden to affected families and the society as a whole. Suicidal behavior involves a multi-factorial etiology, including psychological, social and biological factors. Since the molecular neural mechanisms of suicide remain vastly uncharacterized, we examined transcriptional- and methylation profiles of postmortem brain tissue from subjects who died from suicide as well as their neurotypical healthy controls. We analyzed temporal pole tissue from 61 subjects, largely free from antidepressant and antipsychotic medication, using RNA-sequencing and DNA-methylation profiling using an array that targets over 850,000 CpG sites. Expression of NPAS4, a key regulator of inflammation and neuroprotection, was significantly downregulated in the suicide decedent group. Moreover, we identified a total of 40 differentially methylated regions in the suicide decedent group, mapping to seven genes with inflammatory function. There was a significant association between NPAS4 DNA methylation and NPAS4 expression in the control group that was absent in the suicide decedent group, confirming its dysregulation. NPAS4 expression was significantly associated with the expression of multiple inflammatory factors in the brain tissue. Overall, gene sets and pathways closely linked to inflammation were significantly upregulated, while specific pathways linked to neuronal development were suppressed in the suicide decedent group. Excitotoxicity as well as suppressed oligodendrocyte function were also implicated in the suicide decedents. In summary, we have identified central nervous system inflammatory mechanisms that may be active during suicidal behavior, along with oligodendrocyte dysfunction and altered glutamate neurotransmission. In these processes, NPAS4 might be a master regulator, warranting further studies to validate its role as a potential biomarker or therapeutic target in suicidality.

2.
Heliyon ; 9(4): e15622, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37128335

RESUMEN

Background: Epidemiological studies have variably linked air pollution to increased risk of Parkinson's disease (PD). However, there is little experimental evidence for this association. Alpha-synuclein (α-syn) propagation plays central roles in PD and glutamate receptor A1 (GluA1) is involved in memory and olfaction function. Methods: Each mouse was exposed to one of three different batches of nano-particulate matter (nPM) (300 µg/m3, 5 h/d, 3 d/week), collected at different dates, 2017-2019, in the same urban site. After these experiments, these nPM batches were found to vary in activity. C57BL/6 female mice (3 mo) were injected with pre-formed murine α-synuclein fibrils (PFFs) (0.4 µg), which act as seeds for α-syn aggregation. Two exposure paradigms were used: in Paradigm 1, PFFs were injected into olfactory bulb (OB) prior to 4-week nPM (Batch 5b) exposure and in Paradigm 2, PFFs were injected at 4th week during 10-week nPM exposure (Batches 7 and 9). α-syn pSer129, microglia Iba1, inflammatory cytokines, and Gria1 expression were measured by immunohistochemistry or qPCR assays. Results: As expected, α-syn pSer129 was detected in ipsilateral OB, anterior olfactory nucleus, amygdala and piriform cortex. One of the three batches of nPM caused a trend for elevated α-syn pSer129 in Paradigm 1, but two other batches showed no effect in Paradigm 2. However, the combination of nPM and PFF significantly decreased Gria1 mRNA in both the ipsi- and contra-lateral OB and frontal cortex for the most active two nPM batches. Neither nPM nor PFFs alone induced responses of microglia Iba1 and expression of Gria1 in the OB and cortex. Conclusion: Exposures to ambient nPM had weak effect on α-syn propagation in the brain in current experimental paradigms; however, nPM and α-syn synergistically downregulated the expression of Gria1 in both OB and cortex.

3.
Acta Neuropathol ; 145(5): 541-559, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36991261

RESUMEN

Symptoms in the urogenital organs are common in multiple system atrophy (MSA), also in the years preceding the MSA diagnosis. It is unknown how MSA is triggered and these observations in prodromal MSA led us to hypothesize that synucleinopathy could be triggered by infection of the genitourinary tract causing ɑ-synuclein (ɑSyn) to aggregate in peripheral nerves innervating these organs. As a first proof that peripheral infections could act as a trigger in MSA, this study focused on lower urinary tract infections (UTIs), given the relevance and high frequency of UTIs in prodromal MSA, although other types of infection might also be important triggers of MSA. We performed an epidemiological nested-case control study in the Danish population showing that UTIs are associated with future diagnosis of MSA several years after infection and that it impacts risk in both men and women. Bacterial infection of the urinary bladder triggers synucleinopathy in mice and we propose a novel role of ɑSyn in the innate immune system response to bacteria. Urinary tract infection with uropathogenic E. coli results in the de novo aggregation of ɑSyn during neutrophil infiltration. During the infection, ɑSyn is released extracellularly from neutrophils as part of their extracellular traps. Injection of MSA aggregates into the urinary bladder leads to motor deficits and propagation of ɑSyn pathology to the central nervous system in mice overexpressing oligodendroglial ɑSyn. Repeated UTIs lead to progressive development of synucleinopathy with oligodendroglial involvement in vivo. Our results link bacterial infections with synucleinopathy and show that a host response to environmental triggers can result in ɑSyn pathology that bears semblance to MSA.


Asunto(s)
Atrofia de Múltiples Sistemas , Sinucleinopatías , Infecciones Urinarias , Ratones , Femenino , Animales , Sinucleinopatías/patología , Estudios de Casos y Controles , Escherichia coli , Ratones Transgénicos , alfa-Sinucleína , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/patología , Infecciones Urinarias/complicaciones , Inmunidad Innata
4.
Elife ; 112022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775627

RESUMEN

The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson's disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in the mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.


Asunto(s)
Complejo Nuclear Basolateral , Enfermedad de Parkinson , Animales , Complejo Nuclear Basolateral/metabolismo , Ratones , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , alfa-Sinucleína/metabolismo
5.
Neurobiol Dis ; 159: 105513, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34536552

RESUMEN

Autophagic dysregulation and lysosomal impairment have been implicated in the pathogenesis of Parkinson's disease, partly due to the identification of mutations in multiple genes involved in these pathways such as GBA, SNCA, ATP13a2 (also known as PARK9), TMEM175 and LRRK2. Mutations resulting in lysosomal dysfunction are proposed to contribute to Parkinson's disease by increasing α-synuclein levels, that in turn may promote aggregation of this protein. Here, we used two different genetic models-one heterozygous for a mutated form of the GBA protein (D409V), and the other heterozygous for an ATP13a2 loss-of-function mutation, to test whether these mutations exacerbate the spread of α-synuclein pathology following injection of α-synuclein preformed fibrils in the olfactory bulb of 12-week-old mice. Contrary to our hypothesis, we found that mice harboring GBA D409V+/- and ATP13a2+/- mutations did not have exacerbated behavioral impairments or histopathology (α-synuclein, LAMP2, and Iba1) when compared to their wildtype littermates. This indicates that in the young mouse brain, neither the GBA D409V mutation or ATP13a2 loss-of-function mutation accelerate the spread of α-synuclein pathology. As a consequence, we postulate that these mutations increase Parkinson's disease risk only by acting in one of the initial, upstream events in the Parkinson's disease pathogenic process. Further, the mutations, and the molecular pathways they impact, appear to play a less important role once the pathogenic process has been triggered and therefore do not specifically influence α-synuclein pathology spread.


Asunto(s)
Autofagia/genética , Glucosilceramidasa/genética , Trastornos Parkinsonianos/genética , Agregado de Proteínas , ATPasas de Translocación de Protón/genética , Olfato/genética , alfa-Sinucleína/metabolismo , Animales , Conducta Animal , Heterocigoto , Locomoción , Mutación con Pérdida de Función , Ratones , Mutación , Bulbo Olfatorio , Corteza Olfatoria/patología , Corteza Olfatoria/fisiopatología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Corteza Perirrinal/patología , Corteza Perirrinal/fisiopatología , Síntomas Prodrómicos , Olfato/fisiología
6.
Hum Gene Ther ; 32(11-12): 616-627, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34006117

RESUMEN

Several neurodegenerative disorders are characterized by oligodendroglial pathology and myelin loss. Oligodendrogliopathies are a group of rare diseases for which there currently is no therapy. Gene delivery through viral vectors to oligodendrocytes is a potential strategy to deliver therapeutic molecules to oligodendrocytes for disease modification. However, targeting oligodendroglial cells in vivo is challenging due to their widespread distribution in white and gray matter. In this study, we aimed to address several of these difficulties by designing and testing different oligodendroglial targeting vectors in rat and mouse brain, utilizing different promoters, serotypes, and delivery routes. We found that different oligodendroglial promoters (myelin basic protein [MBP], cytomegalovirus-enhanced MBP, and myelin-associated glycoprotein [MAG]) vary considerably in their ability to drive oligodendroglial transgene expression and different viral vector serotypes (rAAV2/7, rAAV2/8, and rAAV2/9) exhibit varying efficacies in transducing oligodendrocytes. Different administration routes through intracerebral or intraventricular injection allow widespread targeting of mature oligodendrocytes. Delivery of rAAV2/9-MAG-GFP into the cerebrospinal fluid results in GFP expression along the entire rostrocaudal axis of the spinal cord. Collectively, these results show that oligodendrocytes can be targeted with high specificity and widespread expression, which will be useful for gene therapeutic interventions or disease modeling purposes.


Asunto(s)
Oligodendroglía , Roedores , Animales , Encéfalo , Vectores Genéticos/genética , Ratones , Ratas , Transgenes
7.
Exp Neurol ; 341: 113693, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33727096

RESUMEN

The repurposing of drugs developed to treat type 2 diabetes for the treatment of Parkinson's disease (PD) was encouraged by the beneficial effect exerted by the glucagon-like peptide 1 (GLP-1) analogue exenatide in a phase 2 clinical trial. The effects of GLP-1 analogues have been investigated extensively using rodent toxin models of PD. However, many of the toxin-based models used lack robust α-synuclein (α-syn) pathology, akin to the Lewy bodies and neurites seen in PD. One prior study has reported a protective effect of a GLP-1 analogue on midbrain dopamine neurons following injection of α-syn preformed fibrils (PFF) into the striatum. Here, we used olfactory bulb injections of PFF as a model of prodromal PD and monitored the effect of a long-acting GLP-1 analogue on the propagation of α-syn pathology in the olfactory system. Thirteen weeks after PFF injection, mice treated with long-acting the GLP-1 analogue had a significant increase in pathological α-syn in brain regions connected to the olfactory bulb, accompanied by signs of microglia activation. Our results suggest that the nature of the neuronal insult and intrinsic properties of the targeted neuronal population markedly influence the effect of GLP-1 analogues.


Asunto(s)
Péptido 1 Similar al Glucagón/análogos & derivados , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Síntomas Prodrómicos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidad , Animales , Modelos Animales de Enfermedad , Femenino , Péptido 1 Similar al Glucagón/administración & dosificación , Inyecciones Subcutáneas , Masculino , Ratones , Ratones Endogámicos C57BL , alfa-Sinucleína/administración & dosificación
8.
J Parkinsons Dis ; 11(2): 585-603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579871

RESUMEN

BACKGROUND: α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease.ObjectiveTo study the role of the adaptive immune system with respect to α-syn pathology. METHODS: We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. RESULTS: Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. CONCLUSION: Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Ratones , Sustancia Negra/metabolismo , Linfocitos T/metabolismo , alfa-Sinucleína/metabolismo
9.
Free Neuropathol ; 22021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37284635

RESUMEN

Background: In some people with Parkinson's disease (PD), α-synuclein (αSyn) accumulation may begin in the enteric nervous system (ENS) decades before development of brain pathology and disease diagnosis. Objective: To determine how different types and severity of intestinal inflammation could trigger αSyn accumulation in the ENS and the subsequent development of αSyn brain pathology. Methods: We assessed the effects of modulating short- and long-term experimental colitis on αSyn accumulation in the gut of αSyn transgenic and wild type mice by immunostaining and gene expression analysis. To determine the long-term effect on the brain, we induced dextran sulfate sodium (DSS) colitis in young αSyn transgenic mice and aged them under normal conditions up to 9 or 21 months before tissue analyses. Results: A single strong or sustained mild DSS colitis triggered αSyn accumulation in the submucosal plexus of wild type and αSyn transgenic mice, while short-term mild DSS colitis or inflammation induced by lipopolysaccharide did not have such an effect. Genetic and pharmacological modulation of macrophage-associated pathways modulated the severity of enteric αSyn. Remarkably, experimental colitis at three months of age exacerbated the accumulation of aggregated phospho-Serine 129 αSyn in the midbrain (including the substantia nigra), in 21- but not 9-month-old αSyn transgenic mice. This increase in midbrain αSyn accumulation is accompanied by the loss of tyrosine hydroxylase-immunoreactive nigral neurons. Conclusions: Our data suggest that specific types and severity of intestinal inflammation, mediated by monocyte/macrophage signaling, could play a critical role in the initiation and progression of PD.

10.
J Parkinsons Dis ; 10(4): 1411-1427, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925105

RESUMEN

BACKGROUND: Parkinson's disease (PD) neuropathology is characterized by intraneuronal protein aggregates composed of misfolded α-Synuclein (α-Syn), as well as degeneration of substantia nigra dopamine neurons. Deficits in olfactory perception and aggregation of α-Syn in the olfactory bulb (OB) are observed during early stages of PD, and have been associated with the PD prodrome, before onset of the classic motor deficits. α-Syn fibrils injected into the OB of mice cause progressive propagation of α-Syn pathology throughout the olfactory system and are coupled to olfactory perceptual deficits. OBJECTIVE: We hypothesized that accumulation of pathogenic α-Syn in the OB impairs neural activity in the olfactory system. METHODS: To address this, we monitored spontaneous and odor-evoked local field potential dynamics in awake wild type mice simultaneously in the OB and piriform cortex (PCX) one, two, and three months following injection of pathogenic preformed α-Syn fibrils in the OB. RESULTS: We detected α-Syn pathology in both the OB and PCX. We also observed that α-Syn fibril injections influenced odor-evoked activity in the OB. In particular, α-Syn fibril-injected mice displayed aberrantly high odor-evoked power in the beta spectral range. A similar change in activity was not detected in the PCX, despite high levels of α-Syn pathology. CONCLUSION: Together, this work provides evidence that synucleinopathy impacts in vivo neural activity in the olfactory system at the network-level.


Asunto(s)
Bulbo Olfatorio/fisiopatología , Corteza Piriforme/fisiopatología , Sinucleinopatías/fisiopatología , alfa-Sinucleína/farmacología , Animales , Ritmo beta/fisiología , Modelos Animales de Enfermedad , Potenciales Evocados/fisiología , Ratones , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Percepción Olfatoria/fisiología , Corteza Piriforme/efectos de los fármacos , Corteza Piriforme/metabolismo , Corteza Piriforme/patología , Sinucleinopatías/inducido químicamente , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , alfa-Sinucleína/administración & dosificación
11.
Artículo en Inglés | MEDLINE | ID: mdl-35224554

RESUMEN

Epidemiological studies suggest a link between type-2 diabetes and Parkinson's disease (PD) risk. Treatment of type-2 diabetes with insulin sensitizing drugs lowers the risk of PD. We previously showed that the insulin sensitizing drug, MSDC-0160, ameliorates pathogenesis in some animal models of PD. MSDC-0160 reversibly binds the mitochondrial pyruvate carrier (MPC) protein complex, which has an anti-inflammatory effect and restores metabolic deficits. Since PD is characterized by the deposition of α-synuclein (αSyn), we hypothesized that inhibiting the MPC might directly inhibit αSyn aggregation in vivo in mammals. To answer if modulation of MPC can reduce the development of αSyn assemblies, and reduce neurodegeneration, we treated two chronic and progressive mouse models; a viral vector-based αSyn overexpressing model and a pre-formed fibril (PFF) αSyn seeding model with MSDC-0160. These two models present distinct types of αSyn pathology but lack inflammatory or autophagy deficits. Contrary to our hypothesis, we found that a modulation of MPC in these models did not reduce the accumulation of αSyn aggregates or mitigate neurotoxicity. Instead, MSDC-0160 changed the post-translational modification and aggregation features of αSyn. These results are consistent with the lack of a direct effect of MPC modulation on synuclein clearance in these models.

12.
Mol Neurodegener ; 14(1): 34, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31419995

RESUMEN

BACKGROUND: Cell-to-cell propagation of α-synuclein (α-syn) aggregates is thought to contribute to the pathogenesis of Parkinson's disease (PD) and underlie the spread of α-syn neuropathology. Increased pro-inflammatory cytokine levels and activated microglia are present in PD and activated microglia can promote α-syn aggregation. However, it is unclear how microglia influence α-syn cell-to-cell transfer. METHODS: We developed a clinically relevant mouse model to monitor α-syn prion-like propagation between cells; we transplanted wild-type mouse embryonic midbrain neurons into a mouse striatum overexpressing human α-syn (huα-syn) following adeno-associated viral injection into the substantia nigra. In this system, we depleted or activated microglial cells and determined the effects on the transfer of huα-syn from host nigrostriatal neurons into the implanted dopaminergic neurons, using the presence of huα-syn within the grafted cells as a readout. RESULTS: First, we compared α-syn cell-to-cell transfer between host mice with a normal number of microglia to mice in which we had pharmacologically ablated 80% of the microglia from the grafted striatum. With fewer host microglia, we observed increased accumulation of huα-syn in grafted dopaminergic neurons. Second, we assessed the transfer of α-syn into grafted neurons in the context of microglia activated by one of two stimuli, lipopolysaccharide (LPS) or interleukin-4 (IL-4). LPS exposure led to a strong activation of microglial cells (as determined by microglia morphology, cytokine production and an upregulation in genes involved in the inflammatory response in the LPS-injected mice by RNA sequencing analysis). LPS-injected mice had significantly higher amounts of huα-syn in grafted neurons. In contrast, injection of IL-4 did not change the proportion of grafted dopamine neurons that contained huα-syn relative to controls. As expected, RNA sequencing analysis on striatal tissue revealed differential gene expression between LPS and IL-4-injected mice; with the genes upregulated in tissue from mice injected with LPS including several of those involved in an inflammatory response. CONCLUSIONS: The absence or the hyperstimulation of microglia affected α-syn transfer in the brain. Our results suggest that under resting, non-inflammatory conditions, microglia modulate the transfer of α-syn. Pharmacological regulation of neuroinflammation could represent a future avenue for limiting the spread of PD neuropathology.


Asunto(s)
Encéfalo/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Femenino , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Enfermedad de Parkinson/tratamiento farmacológico
13.
J Parkinsons Dis ; 9(2): 315-326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30932894

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a synucleinopathy that has multiple neuropathological characteristics, with nigrostriatal dopamine system degeneration being a core feature. Current models of PD pathology typically fail to recapitulate several attributes of the pathogenic process and neuropathology. We aimed to define the effects of combining a mouse model exhibiting multiple PD-like changes with intrastriatal injections of α-synuclein (α-syn) pre-formed fibril (PFFs) aggregates. We employed the heterozygous Engrailed 1 (En1+/-) mouse that features several pathophysiological hallmarks of clinical PD. OBJECTIVE: To test the hypothesis that the neuropathological changes in the En1+/- mice will promote formation of α-syn aggregates following intrastriatal injections of pathogenic human α-syn PFFs. METHODS: We unilaterally injected PFFs into the striata of 1-month-old En1+/- and control wild-type mice and euthanized animals at 3 months for post-mortem analysis. RESULTS: Using immunohistochemistry and unbiased stereology, we established that PFF-injected En1+/- mice exhibited a near-threefold increase in pS129-α-syn-positive neurons in the substantia nigra compared to PFF-injected wild-type mice. The PFF-injected En1+/- mice also displayed significant increases in pS129-α-syn-positive neurons in the amygdala and ventral tegmental area; regions of known PD pathology with projections to the striatum. Additionally, we observed amplified pS129-α-syn-positive aggregation in En1+/- mice in multiple cortical regions. CONCLUSIONS: Following intrastriatal injection of PFFs, absence of an En1 allele leads to additional aggregation of pathological α-syn, potentially due to En1-loss mediated nigrostriatal impairment. We propose that further development of this double-hit model could result in a PD mouse model that predicts which experimental therapies will be effective in PD.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Homeodominio/genética , Agregado de Proteínas , Agregación Patológica de Proteínas/genética , Sinucleinopatías/genética , alfa-Sinucleína/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Ratones , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Neostriado/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología
14.
Acta Neuropathol Commun ; 7(1): 221, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888771

RESUMEN

Alpha-synuclein inclusions, the hallmarks of synucleinopathies, are suggested to spread along neuronal connections in a stereotypical pattern in the brains of patients. Ample evidence now supports that pathological forms of alpha-synuclein propagate in cell culture models and in vivo in a prion-like manner. However, it is still not known why the same pathological protein targets different cell populations, propagates with different kinetics and leads to a variety of diseases (synucleinopathies) with distinct clinical features. The aggregation of the protein alpha-synuclein yields different conformational polymorphs called strains. These strains exhibit distinct biochemical, physical and structural features they are able to imprint to newly recruited alpha-synuclein. This had led to the view that the clinical heterogeneity observed in synucleinopathies might be due to distinct pathological alpha-synuclein strains.To investigate the pathological effects of alpha-synuclein strains in vivo, we injected five different pure strains we generated de novo (fibrils, ribbons, fibrils-65, fibrils-91, fibrils-110) into the olfactory bulb of wild-type female mice. We demonstrate that they seed and propagate pathology throughout the olfactory network within the brain to different extents. We show strain-dependent inclusions formation in neurites or cell bodies. We detect thioflavin S-positive inclusions indicating the presence of mature amyloid aggregates.In conclusion, alpha-synuclein strains seed the aggregation of their cellular counterparts to different extents and spread differentially within the central nervous system yielding distinct propagation patterns. We provide here the proof-of-concept that the conformation adopted by alpha-synuclein assemblies determines their ability to amplify and propagate in the brain in vivo. Our observations support the view that alpha-synuclein polymorphs may underlie different propagation patterns within human brains.


Asunto(s)
Neuronas/metabolismo , Neuronas/patología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Animales , Femenino , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Sinucleinopatías/patología , alfa-Sinucleína/administración & dosificación
15.
Metabolites ; 8(4)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384419

RESUMEN

For people with Parkinson's disease (PD), considered the most common neurodegenerative disease behind Alzheimer's disease, accurate diagnosis is dependent on many factors; however, misdiagnosis is extremely common in the prodromal phases of the disease, when treatment is thought to be most effective. Currently, there are no robust biomarkers that aid in the early diagnosis of PD. Following previously reported work by our group, we accurately measured the concentrations of 18 bile acids in the serum of a prodromal mouse model of PD. We identified three bile acids at significantly different concentrations (p < 0.05) when mice representing a prodromal PD model were compared with controls. These include ω-murichoclic acid (MCAo), tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA). All were down-regulated in prodromal PD mice with TUDCA and UDCA at significantly lower levels (17-fold and 14-fold decrease, respectively). Using the concentration of three bile acids combined with logistic regression, we can discriminate between prodromal PD mice from control mice with high accuracy (AUC (95% CI) = 0.906 (0.777⁻1.000)) following cross validation. Our study highlights the need to investigate bile acids as potential biomarkers that predict PD and possibly reflect the progression of manifest PD.

16.
J Proteome Res ; 17(7): 2460-2469, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29762036

RESUMEN

Parkinson's disease is the second most common neurodegenerative disease. In the vast majority of cases the origin is not genetic and the cause is not well understood, although progressive accumulation of α-synuclein aggregates appears central to the pathogenesis. Currently, treatments that slow disease progression are lacking, and there are no robust biomarkers that can facilitate the development of such treatments or act as aids in early diagnosis. Therefore, we have defined metabolomic changes in the brain and serum in an animal model of prodromal Parkinson's disease. We biochemically profiled the brain tissue and serum in a mouse model with progressive synucleinopathy propagation in the brain triggered by unilateral injection of preformed α-synuclein fibrils in the olfactory bulb. In total, we accurately identified and quantified 71 metabolites in the brain and 182 in serum using 1H NMR and targeted mass spectrometry, respectively. Using multivariate analysis, we accurately identified which metabolites explain the most variation between cases and controls. Using pathway enrichment analysis, we highlight significantly perturbed biochemical pathways in the brain and correlate these with the progression of the disease. Furthermore, we identified the top six discriminatory metabolites and were able to develop a model capable of identifying animals with the pathology from healthy controls with high accuracy (AUC (95% CI) = 0.861 (0.755-0.968)). Our study highlights the utility of metabolomics in identifying elements of Parkinson's disease pathogenesis and for the development of early diagnostic biomarkers of the disease.


Asunto(s)
Sangre/metabolismo , Encéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Síntomas Prodrómicos , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metaboloma , Ratones , Enfermedad de Parkinson/diagnóstico
17.
Cell Tissue Res ; 373(1): 161-173, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29480459

RESUMEN

Parkinson's disease is characterized by the loss of nigrostriatal dopaminergic signaling and the presence of alpha-synuclein aggregates (also called Lewy bodies and neurites) throughout the brain. In 2003, Braak and colleagues created a staging system for Parkinson's disease describing the connection between the alpha-synuclein pathology and disease severity. Later, they suggested that the pathology might initially be triggered by exogenous insults targeting the gut and olfactory system. In 2008, we and other groups documented Lewy pathology in grafted neurons in people with Parkinson's disease who had been transplanted over a decade prior to autopsy. We proposed that the Lewy pathology in the grafted neurons was the result of permissive templating or prion-like spread of alpha-synuclein pathology from neurons in the host to those in the grafts. During the following ten years, several studies described the transmission of alpha-synuclein pathology between neurons, both in cell culture and in experimental animals. Recent research has also begun to identify underlying molecular mechanisms. Collectively, these experimental studies tentatively support the idea that the progression from one Braak stage to the next is the consequence of prion-like propagation of Lewy pathology. However, definitive proof that intercellular propagation of alpha-synuclein pathology occurs in Parkinson's disease cases has proven difficult to secure. In this review, we highlight several open questions that currently prevent us from concluding with certainty that prion-like transfer of alpha-synuclein contributes to the progression of Parkinson's disease.


Asunto(s)
Priones/metabolismo , alfa-Sinucleína/metabolismo , Animales , Conectoma , Humanos , Neuronas/patología , Enfermedad de Parkinson/patología , Agregado de Proteínas
18.
Acta Neuropathol ; 135(1): 65-83, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29209768

RESUMEN

Parkinson's disease is characterized by degeneration of substantia nigra dopamine neurons and by intraneuronal aggregates, primarily composed of misfolded α-synuclein. The α-synuclein aggregates in Parkinson's patients are suggested to first appear in the olfactory bulb and enteric nerves and then propagate, following a stereotypic pattern, via neural pathways to numerous regions across the brain. We recently demonstrated that after injection of either mouse or human α-synuclein fibrils into the olfactory bulb of wild-type mice, α-synuclein fibrils recruited endogenous α-synuclein into pathological aggregates that spread transneuronally to over 40 other brain regions and subregions, over 12 months. We previously reported the progressive spreading of α-synuclein aggregates, between 1 and 12 months following α-synuclein fibril injections, and now report how far the pathology has spread 18- and 23-month post-injection in this model. Our data show that between 12 and 18 months, there is a further increase in the number of brain regions exhibiting pathology after human, and to a lesser extent mouse, α-synuclein fibril injections. At both 18 and 23 months after injection of mouse and human α-synuclein fibrils, we observed a reduction in the density of α-synuclein aggregates in some brain regions compared to others at 12 months. At 23 months, no additional brain regions exhibited α-synuclein aggregates compared to earlier time points. In addition, we also demonstrate that the induced α-synucleinopathy triggered a significant early neuron loss in the anterior olfactory nucleus. By contrast, there was no loss of mitral neurons in the olfactory bulb, even at 18 month post-injection. We speculate that the lack of continued progression of α-synuclein pathology is due to compromise of the neural circuitry, consequential to neuron loss and possibly to the activation of proteolytic mechanisms in resilient neurons of wild-type mice that counterbalances the spread and seeding by degrading pathogenic α-synuclein.


Asunto(s)
Encéfalo/metabolismo , Muerte Celular/fisiología , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , alfa-Sinucleína/metabolismo , Animales , Transporte Biológico , Encéfalo/patología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Bulbo Olfatorio/patología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/administración & dosificación , alfa-Sinucleína/genética , Proteínas tau/metabolismo
19.
Sci Transl Med ; 8(368): 368ra174, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27928028

RESUMEN

Mitochondrial and autophagic dysfunction as well as neuroinflammation are involved in the pathophysiology of Parkinson's disease (PD). We hypothesized that targeting the mitochondrial pyruvate carrier (MPC), a key controller of cellular metabolism that influences mTOR (mammalian target of rapamycin) activation, might attenuate neurodegeneration of nigral dopaminergic neurons in animal models of PD. To test this, we used MSDC-0160, a compound that specifically targets MPC, to reduce its activity. MSDC-0160 protected against 1-methyl-4-phenylpyridinium (MPP+) insult in murine and cultured human midbrain dopamine neurons and in an α-synuclein-based Caenorhabditis elegans model. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, MSDC-0160 improved locomotor behavior, increased survival of nigral dopaminergic neurons, boosted striatal dopamine levels, and reduced neuroinflammation. Long-term targeting of MPC preserved motor function, rescued the nigrostriatal pathway, and reduced neuroinflammation in the slowly progressive Engrailed1 (En1+/-) genetic mouse model of PD. Targeting MPC in multiple models resulted in modulation of mitochondrial function and mTOR signaling, with normalization of autophagy and a reduction in glial cell activation. Our work demonstrates that changes in metabolic signaling resulting from targeting MPC were neuroprotective and anti-inflammatory in several PD models, suggesting that MPC may be a useful therapeutic target in PD.


Asunto(s)
Autofagia , Inflamación , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/inmunología , Enfermedad de Parkinson/inmunología , Ácido Pirúvico/química , 1-Metil-4-fenilpiridinio/química , Animales , Conducta Animal , Encéfalo/metabolismo , Caenorhabditis elegans , Modelos Animales de Enfermedad , Dopamina/química , Neuronas Dopaminérgicas/metabolismo , Heterocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Consumo de Oxígeno , Enfermedad de Parkinson/metabolismo , Piridinas/química , Transducción de Señal , Sustancia Negra/metabolismo , Tiazolidinedionas/química , alfa-Sinucleína/química
20.
J Exp Med ; 213(9): 1759-78, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27503075

RESUMEN

Parkinson's disease (PD) is characterized by the progressive appearance of intraneuronal Lewy aggregates, which are primarily composed of misfolded α-synuclein (α-syn). The aggregates are believed to propagate via neural pathways following a stereotypical pattern, starting in the olfactory bulb (OB) and gut. We hypothesized that injection of fibrillar α-syn into the OB of wild-type mice would recreate the sequential progression of Lewy-like pathology, while triggering olfactory deficits. We demonstrate that injected α-syn fibrils recruit endogenous α-syn into pathological aggregates that spread transneuronally over several months, initially in the olfactory network and later in distant brain regions. The seeded inclusions contain posttranslationally modified α-syn that is Thioflavin S positive, indicative of amyloid fibrils. The spreading α-syn pathology induces progressive and specific olfactory deficits. Thus, we demonstrate that propagating α-syn pathology triggered in the OB is functionally detrimental. Collectively, we have created a mouse model of prodromal PD.


Asunto(s)
Bulbo Olfatorio/metabolismo , Enfermedad de Parkinson/etiología , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/química , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Cuerpos de Lewy/patología , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas , Tubérculo Olfatorio/metabolismo , Agregación Patológica de Proteínas/etiología , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...