Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Theranostics ; 14(2): 496-509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169605

RESUMEN

Background: Selective TNFR2 activation can be used to treat immune pathologies by activating and expanding regulatory T-cells (Tregs) but may also restore anti-tumour immunity by co-stimulating CD8+ T-cells. Oligomerized TNFR2-specific TNF mutants or anti-TNFR2 antibodies can activate TNFR2 but suffer either from poor production and pharmacokinetics or in the case of anti-TNFR2 antibodies typically from the need of FcγR binding to elicit maximal agonistic activity. Methods: To identify the major factor(s) determining FcγR-independent agonism of anti-TNFR2 antibodies, we systematically investigated a comprehensive panel of anti-TNFR2 antibodies and antibody-based constructs differing in the characteristics of their TNFR2 binding domains but also in the number and positioning of the latter. Results: We identified the domain architecture of the constructs as the pivotal factor enabling FcγR-independent, thus intrinsic TNFR2-agonism. Anti-TNFR2 antibody formats with either TNFR2 binding sites on opposing sites of the antibody scaffold or six or more TNFR2 binding sites in similar orientation regularly showed strong FcγR-independent agonism. The affinity of the TNFR2 binding domain and the epitope recognized in TNFR2, however, were found to be of only secondary importance for agonistic activity. Conclusion: Generic design principles enable the generation of highly active bona fide TNFR2 agonists from nearly any TNFR2-specific antibody.


Asunto(s)
Receptores de IgG , Receptores Tipo II del Factor de Necrosis Tumoral , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores de IgG/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T Reguladores , Anticuerpos/metabolismo , Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Front Immunol ; 13: 888274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769484

RESUMEN

Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods: Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results: STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300% in vivo 5 days after treatment. Treg numbers remained as high as 200% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions: NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Inmunoglobulina G/metabolismo , Ratones , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores
4.
Leukemia ; 36(3): 790-800, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34584204

RESUMEN

Multiple myeloma remains a largely incurable disease of clonally expanding malignant plasma cells. The bone marrow microenvironment harbors treatment-resistant myeloma cells, which eventually lead to disease relapse in patients. In the bone marrow, CD4+FoxP3+ regulatory T cells (Tregs) are highly abundant amongst CD4+ T cells providing an immune protective niche for different long-living cell populations, e.g., hematopoietic stem cells. Here, we addressed the functional role of Tregs in multiple myeloma dissemination to bone marrow compartments and disease progression. To investigate the immune regulation of multiple myeloma, we utilized syngeneic immunocompetent murine multiple myeloma models in two different genetic backgrounds. Analyzing the spatial immune architecture of multiple myeloma revealed that the bone marrow Tregs accumulated in the vicinity of malignant plasma cells and displayed an activated phenotype. In vivo Treg depletion prevented multiple myeloma dissemination in both models. Importantly, short-term in vivo depletion of Tregs in mice with established multiple myeloma evoked a potent CD8 T cell- and NK cell-mediated immune response resulting in complete and stable remission. Conclusively, this preclinical in-vivo study suggests that Tregs are an attractive target for the treatment of multiple myeloma.


Asunto(s)
Mieloma Múltiple/inmunología , Linfocitos T Reguladores/inmunología , Animales , Médula Ósea/inmunología , Progresión de la Enfermedad , Humanos , Activación de Linfocitos , Ratones , Microambiente Tumoral
5.
Cell Death Dis ; 10(3): 224, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833543

RESUMEN

Antibodies specific for TNFRSF receptors that bind soluble ligands without getting properly activated generally act as strong agonists upon FcγR binding. Systematic analyses revealed that the FcγR dependency of such antibodies to act as potent agonists is largely independent from isotype, FcγR type, and of the epitope recognized. This suggests that the sole cellular attachment, achieved by Fc domain-FcγR interaction, dominantly determines the agonistic activity of antibodies recognizing TNFRSF receptors poorly responsive to soluble ligands. In accordance with this hypothesis, we demonstrated that antibody fusion proteins harboring domains allowing FcγR-independent cell surface anchoring also act as strong agonist provided they have access to their target. This finding defines a general possibility to generate anti-TNFRSF receptor antibodies with FcγR-independent agonism. Moreover, anti-TNFRSF receptor antibody fusion proteins with an anchoring domain promise superior applicability to conventional systemically active agonists when an anchoring target with localized disease associated expression can be addressed.


Asunto(s)
Receptores de IgG/inmunología , Receptores del Factor de Necrosis Tumoral/inmunología , Animales , Reacciones Antígeno-Anticuerpo , Epítopos/inmunología , Células HEK293 , Células HT29 , Células HeLa , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Células Jurkat , Ratones , Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores del Factor de Necrosis Tumoral/metabolismo
6.
J Exp Med ; 213(9): 1881-900, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27526711

RESUMEN

Donor CD4(+)Foxp3(+) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT [allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2- and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Linfocitos T Reguladores/inmunología , Enfermedad Aguda , Animales , Femenino , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Interleucina-2/farmacología , Ratones , Ratones Endogámicos , Células Supresoras de Origen Mieloide/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA