Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Am ; 328(4): 15, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-39017340
2.
Sci Am ; 328(4): 12, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-39017338
3.
Dev Cell ; 57(4): 466-479.e6, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35231427

RESUMEN

The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.


Asunto(s)
Citoplasma/metabolismo , Microtúbulos/metabolismo , Polimerizacion , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Núcleo Celular/metabolismo , Interfase/fisiología , Huso Acromático/metabolismo
4.
PLoS One ; 14(2): e0211165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30763333

RESUMEN

The only way to visually observe cellular viscosity, which can greatly influence biological reactions and has been linked to several human diseases, is through viscosity imaging. Imaging cellular viscosity has allowed the mapping of viscosity in cells, and the next frontier is targeted viscosity imaging of organelles and their microenvironments. Here we present a fluorescent molecular rotor/FLIM framework to image both organellar viscosity and membrane fluidity, using a combination of chemical targeting and organelle extraction. For demonstration, we image matrix viscosity and membrane fluidity of mitochondria, which have been linked to human diseases, including Alzheimer's Disease and Leigh's syndrome. We find that both are highly dynamic and responsive to small environmental and physiological changes, even under non-pathological conditions. This shows that neither viscosity nor fluidity can be assumed to be fixed and underlines the need for single-cell, and now even single-organelle, imaging.


Asunto(s)
Colorantes Fluorescentes , Fluidez de la Membrana/fisiología , Imagen Óptica/métodos , Orgánulos/fisiología , Calcio/metabolismo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Glucosa/metabolismo , Células HeLa , Humanos , Membrana Dobles de Lípidos/metabolismo , Mitocondrias/fisiología , Simulación de Dinámica Molecular , Rotación Óptica , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...