RESUMEN
The ability of vitrification when crossing the glass transition temperature (Tg) of confined and bulk water is crucial for myriad phenomena in diverse fields, ranging from the cryopreservation of organs and food to the development of cryoenzymatic reactions, frost damage to buildings, and atmospheric water. However, determining water's Tg remains a major challenge. Here, we elucidate the glass transition of water by analyzing the calorimetric behavior of nano-confined water across various pore topologies (diameters: 0.3 to 2.5 nm). Our approach involves subjecting confined water to annealing protocols to identify the temperature and time evolution of nonequilibrium glass kinetics. Furthermore, we complement this calorimetric approach with the dynamics of confined water, as seen by broadband dielectric spectroscopy and linear calorimetric measurements, including the fast scanning technique. This study demonstrated that confined water undergoes a glass transition in the temperature range of 170 to 200 K, depending on the confinement size and the interaction with the confinement walls. Moreover, we also show that the thermal event observed at ~136 K must be interpreted as an annealing prepeak, also referred to as the "shadow glass transition." Calorimetric measurements also allow the detection of a specific heat step above 200 K, which is insensitive to annealing and, thereby, interpreted as a true thermodynamic transition. Finally, by connecting our results to bulk water behavior, we offer a comprehensive understanding of confined water vitrification with potential implications for numerous applications.
RESUMEN
We investigate water dynamics in mesoporous silica across partial crystallization by combining broadband dielectric spectroscopy (BDS), nuclear magnetic resonance (NMR), and molecular dynamics simulations (MDS). Exploiting the fact that not only BDS but also NMR field-cycling relaxometry and stimulated-echo experiments provide access to dynamical susceptibilities in broad frequency and temperature ranges, we study both the fully liquid state above the melting point Tm and the dynamics of coexisting water and ice phases below this temperature. It is found that partial crystallization leads to a change in the temperature dependence of rotational correlation times τ, which occurs in addition to previously reported dynamical crossovers of confined water and depends on the pore diameter. Furthermore, we observe that dynamical susceptibilities of water are strongly asymmetric in the fully liquid state, whereas they are much broader and nearly symmetric in the partially frozen state. Finally, water in the nonfreezable interfacial layer below Tm does not exhibit a much debated dynamical crossover at â¼220 K. We argue that its dynamics is governed by a static energy landscape, which results from the interaction with the bordering silica and ice surfaces and features a Gaussian-like barrier distribution. Consistently, our MDS analysis of the motional mechanism reveals a hopping motion of water in thin interfacial layers. The rotational correlation times of the confined ice phases follow Arrhenius laws. While the values of τ depend on the pore diameter, freezable water in various types of confinements and mixtures shows similar activation energies of Ea ≈ 0.43 eV.
RESUMEN
We confine water to narrow silica pores, where crystallization is suppressed, and determine the dynamical susceptibilities of the liquid from room temperature down to the glass transition by combining broadband dielectric spectroscopy (BDS) with 1H and 2H nuclear magnetic resonance (NMR), in particular, by establishing NMR field-cycling relaxometry. For the correlation times, derivative analysis reveals Vogel-Fulcher-Tammann and Arrhenius regimes at T ≥ 215 K and T ≤ 160 K, respectively, which are separated by a broad crossover region. The continuous transition in the temperature dependence is accompanied by a gradual change from asymmetric high-temperature shapes of the dynamical susceptibilities to symmetric low-temperature ones and by a steady decrease of the dielectric relaxation strength. In the Arrhenius regime (Ea = 0.48 eV) at T ≤ 160 K, 2D 2H NMR spectra reveal quasi-isotropic water reorientation. We rationalize these results in terms of a crossover to an interface-affected, noncooperative relaxation involving both rotational and translational motions.
RESUMEN
Nanoscale water clusters in an ionic liquid matrix, also called "water pockets," were previously found in some mixtures of water with ionic liquids containing hydrophilic anions. However, in these systems, at least partial crystallization occurs upon supercooling. In this work, we show for mixtures of 1-butyl-3-methylimidazolium dicyanamide with water that none of the components crystallizes up to a water content of 72 mol. %. The dynamics of the ionic liquid matrix is monitored from above room temperature down to the glass transition by combining depolarized dynamic light scattering with broadband dielectric and nuclear magnetic resonance spectroscopy, revealing that the matrix behaves like a common glass former and stays amorphous in the whole temperature range. Moreover, we demonstrate by a combination of Raman spectroscopy, small angle neutron scattering, and molecular dynamics simulation that, indeed, nanoscale water clusters exist in this mixture.
RESUMEN
We prepare various amino-acid functionalized silica pores with diameters of â¼6 nm and study the temperature-dependent reorientation dynamics of water in these confinements. Specifically, we link basic Lys, neutral Ala, and acidic Glu to the inner surfaces and combine 2H nuclear magnetic resonance spin-lattice relaxation and line shape analyses to disentangle the rotational motions of the surfaces groups and the crystalline and liquid water fractions coexisting below partial freezing. Unlike the crystalline phase, the liquid phase shows reorientation dynamics, which strongly depends on the chemistry of the inner surfaces. The water reorientation is slowest for the Lys functionalization, followed by Ala and Glu and, finally, the native silica pores. In total, the rotational correlation times of water at the different surfaces vary by about two orders of magnitude, where this span is largely independent of the temperature in the range â¼200-250 K.
RESUMEN
Using 2H NMR, we determine correlation times and motional mechanisms for the α and ß relaxations of glass-forming imidazolium-based ionic liquids, explicitly, for the associated cation reorientation dynamics. It is shown that the α relaxation is faster, its nonexponentiality is stronger, and the fragility is higher for bis(trifluoromethylsulfonyl)imide anions than that for tetrafluoroborate anions. 2H NMR stimulated-echo studies reveal that the overall reorientation dynamics involved in the α relaxation is isotropic and composed of jumps about small angles, where the mean jump angles are smaller for larger cations. Moreover, we demonstrate that, in addition to a cation-specific ß relaxation, all studied ionic liquids exhibit the genuine Johari-Goldstein ß relaxation of glass-forming liquids. Various 2H NMR results consistently indicate that the associated rotational motion is spatially highly restricted. Altogether, our findings show that, despite strong electrostatic interaction and prominent microphase separation of ionic liquids, their glassy dynamics resemble that of their nonionic counterparts, including similar microscopic mechanisms for intrinsic α and ß relaxations.
RESUMEN
We investigate complex structure-dynamics relations in glass-forming ionic liquids comprising 1-alkyl-3-methylimidazolium cations and bis(trifluoromethylsulfonyl)imide anions. In doing so, we exploit the microheterogeneous structures emerging when the alkyl length is increased in the range n = 1-12 and use that 1H and 2H NMR give information about cation dynamics, while 19F NMR reports on anion motions. Furthermore, we combine spin-lattice relaxation analysis, including field-cycling relaxometry, with stimulated-echo experiments to follow reorientation dynamics related to structural relaxation in wide dynamic ranges and we apply static field gradients to probe translational diffusion. The resulting correlation times τ and diffusion coefficients D show Vogel-Fulcher-Tammann temperature dependence. Moreover, they indicate a moderate slowdown of both cation and anion dynamics with increasing alkyl length n. However, the relative diffusivities of the ionic species depend on the cation size, where cations are more mobile for n < 6 and anions for n > 6. Finally, we relate rotational and translational motions in the framework of the Stokes-Einstein-Debye (SED) approach. We find that the SED relation is obeyed for anion dynamics in all samples, while it breaks down for cation dynamics when n is increased. The origin of this SED breakdown is shown to differ fundamentally from that reported previously for conventional glass formers. We argue that an emergence of cation clusters causes a retardation of cation diffusion relative to cation reorientation upon cooling, i.e., the studied ionic liquids show a complex interplay of structural and dynamical properties.