Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dent J (Basel) ; 12(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38392243

RESUMEN

During orthodontic tooth movement (OTM), areas of compressive and tensile forces are generated in the periodontal ligament (PdL), a mechanoreactive connective tissue between the teeth and alveolar bone. Mechanically stimulated PdL fibroblasts (PdLFs), the main cell type of PdL, express significantly increased levels of growth differentiation factor 15 (GDF15). In compressed PdL areas, GDF15 plays a fundamental role in modulating relevant OTM processes, including inflammation and osteoclast activation. However, the specific function of this factor in tensile areas has not yet been investigated. Thus, the aim of this study was to investigate the role of GDF15 in the mechanoresponse of human PdLFs (hPdLFs) that were exposed to biaxial tensile forces in vitro. Using siRNA-mediated knockdown experiments, we demonstrated that GDF15 had no impact on the anti-inflammatory force response of elongated hPdLFs. Although the anti-inflammatory markers IL1RN and IL10, as well as the activation of immune cells remained unaffected, we demonstrated an inhibitory role of GDF15 for the IL-37 expression. By analyzing osteogenic markers, including ALPL and RUNX2, along with an assessment of alkaline phosphatase activation, we further showed that the regulation of IL-37 by GDF15 modulates the osteogenic differentiation potential of hPdLFs. Despite bone resorption in tensile areas being rather limited, GDF15 was also found to positively modulate osteoclast activation in those areas, potentially by adjusting the IL-37 levels. In light of our new findings, we hypothesize that GDF15 modulates force-induced processes in tissue and bone remodeling through its various intra- and extracellular signaling pathways as well as interaction partners. Potentially acting as a master regulator, the modulation of GDF15 levels may hold relevance for clinical implications.

2.
J Pers Med ; 13(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37623499

RESUMEN

Interdisciplinary, patient-specific cooperation between orthodontics and speech therapy plays an important role in the therapy of myofunctional dysfunctions. The following orthodontic-logopedic screening procedure is intended to objectify the diagnosis of such dysfunctions and the progress of therapy. A diagnostic questionnaire was prepared based on existing diagnostic questionnaires for myofunctional dysfunction. It contains 32 questions, with a clinical weighting of 0 to 50 points in total. This results in a point score. The lower the score is, the lower the need for therapy is. The study included 108 patients between the ages of 6 and 50 years. After screening, the patient population was divided into Group 0 (score < 15; no speech therapy need; n = 36) and Group 1 (score ≥ 15; a speech therapy need; n = 72). Group 1 was additionally randomized into Subgroups A (with speech therapy; n = 36) and B (without speech therapy; n = 36). After a treatment interval of 6 months, all patients in Group 1 were examined again with the help of the screening procedure. Statistical analysis (SPSS) and significance testing (Mann-Whitney U test) were performed. At baseline, there was no significant difference between patients in Subgroups A and B (p = 0.157). Subgroup A had a median score of 25, and Subgroup B had a median score of 30. However, after the treatment interval, a significant improvement (p = 0.001) for Subgroup A with a median score of 11 (mean score difference = 14.67) over Subgroup B with a median score 23 (mean score difference of 7.08) was observed. The developed screening procedure was shown to be equally applicable to all patients and treatment providers. With the help of the scores in point form, the need for speech therapy and the progress of such therapy can be objectified.

3.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37373159

RESUMEN

Periodontal ligament fibroblasts (PdLFs) exert important functions in oral tissue and bone remodeling following mechanical forces, which are specifically applied during orthodontic tooth movement (OTM). Located between the teeth and the alveolar bone, mechanical stress activates the mechanomodulatory functions of PdLFs including regulating local inflammation and activating further bone-remodeling cells. Previous studies suggested growth differentiation factor 15 (GDF15) as an important pro-inflammatory regulator during the PdLF mechanoresponse. GDF15 exerts its effects through both intracrine signaling and receptor binding, possibly even in an autocrine manner. The extent to which PdLFs are susceptible to extracellular GDF15 has not yet been investigated. Thus, our study aims to examine the influence of GDF15 exposure on the cellular properties of PdLFs and their mechanoresponse, which seems particularly relevant regarding disease- and aging-associated elevated GDF15 serum levels. Therefore, in addition to investigating potential GDF15 receptors, we analyzed its impact on the proliferation, survival, senescence, and differentiation of human PdLFs, demonstrating a pro-osteogenic effect upon long-term stimulation. Furthermore, we observed altered force-related inflammation and impaired osteoclast differentiation. Overall, our data suggest a major impact of extracellular GDF15 on PdLF differentiation and their mechanoresponse.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Ligamento Periodontal , Humanos , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Células Cultivadas , Diferenciación Celular , Fibroblastos/metabolismo , Inflamación/metabolismo , Técnicas de Movimiento Dental
4.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34948405

RESUMEN

Periodontitis is characterized by bacterially induced inflammatory destruction of periodontal tissue. This also affects fibroblasts of the human periodontal ligaments (HPdLF), which play a coordinating role in force-induced tissue and alveolar bone remodeling. Excessive inflammation in the oral tissues has been observed with simultaneous stimulation by pathogens and mechanical forces. Recently, elevated levels of growth differentiation factor 15 (GDF15), an immuno-modulatory member of the transforming growth factor (TGFB) superfamily, were detected under periodontitis-like conditions and in force-stressed PdL cells. In view of the pleiotropic effects of GDF15 in various tissues, this study aims to investigate the role of GDF15 in P. gingivalis-related inflammation of HPdLF and its effect on the excessive inflammatory response to concurrent compressive stress. To this end, the expression and secretion of cytokines (IL6, IL8, COX2/PGE2, TNFα) and the activation of THP1 monocytic cells were analyzed in GDF15 siRNA-treated HPdLF stimulated with P. gingivalis lipopolysaccharides alone and in combination with compressive force. GDF15 knockdown significantly reduced cytokine levels and THP1 activation in LPS-stimulated HPdLF, which was less pronounced with additional compressive stress. Overall, our data suggest a pro-inflammatory role for GDF15 in periodontal disease and demonstrate that GDF15 partially modulates the force-induced excessive inflammatory response of PdLF under these conditions.


Asunto(s)
Infecciones por Bacteroidaceae/inmunología , Fibroblastos/inmunología , Factor 15 de Diferenciación de Crecimiento/inmunología , Inflamación/inmunología , Lipopolisacáridos/inmunología , Porphyromonas gingivalis/inmunología , Células Cultivadas , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/inmunología , Periodontitis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...