Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Front Immunol ; 15: 1372959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690277

RESUMEN

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Asunto(s)
Perfilación de la Expresión Génica , Hipertensión Pulmonar , Hipoxia , Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Hipoxia/metabolismo , Hipoxia/inmunología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/genética , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Pulmón/inmunología , Pulmón/patología , Pulmón/metabolismo
2.
Front Immunol ; 15: 1372957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779688

RESUMEN

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Asunto(s)
Hipertensión Pulmonar , Macrófagos , Animales , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/parasitología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/patología , Ratones , Macrófagos/inmunología , Macrófagos/parasitología , Fenotipo , Schistosoma mansoni/inmunología , Ratones Endogámicos C57BL , Esquistosomiasis/inmunología , Esquistosomiasis/complicaciones , Esquistosomiasis/parasitología , Modelos Animales de Enfermedad , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/patología , Trombospondina 1/genética , Trombospondina 1/metabolismo , Monocitos/inmunología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Femenino , Schistosoma/inmunología , Schistosoma/fisiología , Pulmón/inmunología , Pulmón/parasitología , Pulmón/patología
3.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585857

RESUMEN

Collagen cross-links created by the lysyl oxidase and lysyl hydroxylase families of enzymes are a significant contributing factor to the biomechanical strength and rigidity of tissues, which in turn influence cell signaling and ultimately cell phenotype. In the clinic, the proteolytically liberated N-terminal cross-linked peptide of collagen I (NTX) is used as a biomarker of bone and connective tissue turnover, which is altered in several disease processes. Despite the clinical utility of these collagen breakdown products, the majority of the cross-linked peptide species have not been identified in proteomic datasets. Here we evaluate several parameters for the preparation and identification of these peptides from the collagen I-rich Achilles tendon. Our refined approach involving chemical digestion for protein solubilization coupled with mass spectrometry allows for the identification of the NTX cross-links in a range of modification states. Based on the specificity of the enzymatic cross-linking reaction we utilized follow-up variable modification searches to facilitate identification with a wider range of analytical workflows. We then applied a spectral library approach to identify differences in collagen cross-links in bovine pulmonary hypertension. The presented method offers unique opportunities to understand extracellular matrix remodeling events in development, aging, wound healing, and fibrotic disease that modulate collagen architecture through lysyl-hydroxylase and lysyl-oxidase enzymes.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38568479

RESUMEN

RATIONALE: Idiopathic Pulmonary Arterial Hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling due to plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. OBJECTIVE: Test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. METHODS: We used digital spatial transcriptomics to profile the genome-wide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n= 11) and compared these data to the intima+media and adventitia of control pulmonary artery (n=5). RESULTS: We detected 8273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima-media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for (i) genes associated with TGFß-signaling and (ii) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and interferon signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. CONCLUSIONS: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.

5.
EMBO Rep ; 25(2): 616-645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38243138

RESUMEN

Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Ratones , Humanos , Animales , Pericitos/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Pulmón
6.
Int J Cardiovasc Imaging ; 40(2): 425-439, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37902921

RESUMEN

Pulmonary arterial stiffness (PAS) is a pathologic hallmark of all types of pulmonary hypertension (PH). Cardiac MRI (CMR), a gold-standard imaging modality for the evaluation of pulmonary flow, biventricular morphology and function has been historically reserved for the longitudinal clinical follow-up, PH phenotyping purposes, right ventricular evaluation, and research purposes. Over the last two decades, numerous indices combining invasive catheterization and non-invasive CMR have been utilized to phenotype the character and severity of PAS in different types of PH and to assess its clinically prognostic potential with encouraging results. Many recent studies have demonstrated a strong role of CMR derived PAS markers in predicting long-term clinical outcomes and improving currently gold standard risk assessment provided by the REVEAL calculator. With the utilization of a machine learning strategies, strong diagnostic and prognostic performance of CMR reported in multicenter studies, and ability to detect PH at early stages, the non-invasive assessment of PAS is on verge of routine clinical utilization. In this review, we focus on appraising important CMR studies interrogating PAS over the last 20 years, describing the benefits and limitations of different PAS indices, and their pathophysiologic relevance to pulmonary vascular remodeling. We also discuss the role of CMR and PAS in clinical surveillance and phenotyping of PH, and the long-term future goal to utilize PAS as a biomarker to aid with more targeted therapeutic management.


Asunto(s)
Hipertensión Pulmonar , Rigidez Vascular , Humanos , Cateterismo Cardíaco/métodos , Valor Predictivo de las Pruebas , Arteria Pulmonar , Imagen por Resonancia Magnética , Hipertensión Pulmonar/diagnóstico por imagen , Función Ventricular Derecha
7.
FASEB J ; 37(12): e23316, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983890

RESUMEN

Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos Alveolares , Ratones , Humanos , Animales , Macrófagos Alveolares/metabolismo , Células Epiteliales Alveolares/metabolismo , Ácido Láctico/metabolismo , Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Antiinflamatorios/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo
8.
Am J Respir Crit Care Med ; 208(8): 879-895, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37676930

RESUMEN

Rationale: Immune dysregulation is a common feature of pulmonary arterial hypertension (PAH). Histone deacetylase (HDAC)-dependent transcriptional reprogramming epigenetically modulates immune homeostasis and is a novel disease-oriented approach in modern times. Objectives: To identify a novel functional link between HDAC and regulatory T cells (Tregs) in PAH, aiming to establish disease-modified biomarkers and therapeutic targets. Methods: Peripheral blood mononuclear cells were isolated from patients with idiopathic PAH (IPAH) and rodent models of pulmonary hypertension (PH): monocrotaline rats, Sugen5416-hypoxia rats, and Treg-depleted mice. HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to examine the immune modulatory effects in vivo, ex vivo, and in vitro. Measurements and Main Results: Increased HDAC expression was associated with reduced Foxp3+ Tregs and increased PD-1 (programmed cell death-1) signaling in peripheral blood mononuclear cells from patients with IPAH. SAHA differentially modified a cluster of epigenetic-sensitive genes and induced Foxp3+ Treg conversion in IPAH T cells. Rodent models recapitulated these epigenetic aberrations and T-cell dysfunction. SAHA attenuated PH phenotypes and restored FOXP3 transcription and Tregs in PH rats; interestingly, the effects were more profound in female rats. Selective depletion of CD25+ Tregs in Sugen5416-hypoxia mice neutralized the effects of SAHA. Furthermore, SAHA inhibited endothelial cytokine/chemokine release upon stimulation and subsequent immune chemotaxis. Conclusions: Our results indicated HDAC aberration was associated with Foxp3+ Treg deficiency and demonstrated an epigenetic-mediated mechanism underlying immune dysfunction in PAH. Restoration of Foxp3+ Tregs by HDAC inhibitors is a promising approach to resolve pulmonary vascular pathology, highlighting the potential benefit of developing epigenetic therapies for PAH.

9.
Clin Appl Thromb Hemost ; 29: 10760296231186144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469147

RESUMEN

Aberrant coagulation in sickle cell disease (SCD) is linked to extracellular vesicle (EV) exposure. However, there is no consensus on the contributions of small EVs (SEVs) and large EVs (LEVs) toward underlying coagulopathy or on their molecular cargo. The present observational study compared the thrombin potential of SEVs and LEVs isolated from the plasma of stable pediatric and adult SCD patients. Further, EV lipid and protein contents were analyzed to define markers consistent with activation of thrombin and markers of underlying coagulopathy. Results suggested that LEVs-but not SEVs-from pediatrics and adults similarly enhanced phosphatidylserine (PS)-dependent thrombin generation, and cell membrane procoagulant PS (18:0;20:4 and 18:0;18:1) were the most abundant lipids found in LEVs. Further, LEVs showed activated coagulation in protein pathway analyses, while SEVs demonstrated high levels of cholesterol esters and a protein pathway analysis that identified complement factors and inflammation. We suggest that thrombin potential of EVs from both stable pediatric and adult SCD patients is similarly dependent on size and show lipid and protein contents that identify underlying markers of coagulation and inflammation.


Asunto(s)
Anemia de Células Falciformes , Vesículas Extracelulares , Humanos , Adulto , Niño , Trombina/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Inflamación/metabolismo , Lípidos
10.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37502951

RESUMEN

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) remain poorly treated inflammatory lung disorders. Both reactive oxygen species (ROS) and macrophages are involved in the pathogenesis of ALI/ARDS. Xanthine oxidoreductase (XOR) is an ROS generator that plays a central role in the inflammation that contributes to ALI. To elucidate the role of macrophage-specific XOR in endotoxin induced ALI, we developed a conditional myeloid specific XOR knockout in mice. Myeloid specific ablation of XOR in LPS insufflated mice markedly attenuated lung injury demonstrating the essential role of XOR in this response. Macrophages from myeloid specific XOR knockout exhibited loss of inflammatory activation and increased expression of anti-inflammatory genes/proteins. Transcriptional profiling of whole lung tissue of LPS insufflated XOR fl/fl//LysM-Cre mice demonstrated an important role for XOR in expression and activation of the NLRP3 inflammasome and acquisition of a glycolytic phenotype by inflammatory macrophages. These results identify XOR as an unexpected link between macrophage redox status, mitochondrial respiration and inflammatory activation.

11.
Front Immunol ; 14: 1223122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497214

RESUMEN

Introduction: In pulmonary hypertension (PH), pulmonary arterial remodeling is often accompanied by perivascular inflammation. The inflammation is characterized by the accumulation of activated macrophages and lymphocytes within the adventitial stroma, which is comprised primarily of fibroblasts. The well-known ability of fibroblasts to secrete interleukins and chemokines has previously been implicated as contributing to this tissue-specific inflammation in PH vessels. We were interested if pulmonary fibroblasts from PH arteries contribute to microenvironmental changes that could activate and polarize T-cells in PH. Methods: We used single-cell RNA sequencing of intact bovine distal pulmonary arteries (dPAs) from PH and control animals and flow cytometry, mRNA expression analysis, and respirometry analysis of blood-derived bovine/human T-cells exposed to conditioned media obtained from pulmonary fibroblasts of PH/control animals and IPAH/control patients (CM-(h)PH Fibs vs CM-(h)CO Fibs). Results: Single-cell RNA sequencing of intact bovine dPAs from PH and control animals revealed a pro-inflammatory phenotype of CD4+ T-cells and simultaneous absence of regulatory T-cells (FoxP3+ Tregs). By exposing T-cells to CM-(h)PH Fibs we stimulated their proinflammatory differentiation documented by increased IFNγ and decreased IL4, IL10, and TGFß mRNA and protein expression. Interestingly, we demonstrated a reduction in the number of suppressive T-cell subsets, i.e., human/bovine Tregs and bovine γδ T-cells treated with CM-(h)PH-Fibs. We also noted inhibition of anti-inflammatory cytokine expression (IL10, TGFß, IL4). Pro-inflammatory polarization of bovine T-cells exposed to CM-PH Fibs correlated with metabolic shift to glycolysis and lactate production with increased prooxidant intracellular status as well as increased proliferation of T-cells. To determine whether metabolic reprogramming of PH-Fibs was directly contributing to the effects of PH-Fibs conditioned media on T-cell polarization, we treated PH-Fibs with the HDAC inhibitor SAHA, which was previously shown to normalize metabolic status and examined the effects of the conditioned media. We observed significant suppression of inflammatory polarization associated with decreased T-cell proliferation and recovery of mitochondrial energy metabolism. Conclusion: This study demonstrates how the pulmonary fibroblast-derived microenvironment can activate and differentiate T-cells to trigger local inflammation, which is part of the vascular wall remodeling process in PH.


Asunto(s)
Hipertensión Pulmonar , Humanos , Animales , Bovinos , Hipertensión Pulmonar/metabolismo , Medios de Cultivo Condicionados/metabolismo , Interleucina-10 , Interleucina-4 , Inflamación/metabolismo , Subgrupos de Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta
12.
Am J Respir Cell Mol Biol ; 69(5): 570-583, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37343939

RESUMEN

Pulmonary hypertension (PH) is a heterogeneous and life-threatening cardiopulmonary disorder in which mitochondrial dysfunction is believed to drive pathogenesis, although the underlying mechanisms remain unclear. To determine if abnormal SIRT3 (sirtuin 3) activity is related to mitochondrial dysfunction in adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension (IPAH) and hypoxic PH calves (PH-Fibs) and whether SIRT3 could be a potential therapeutic target to improve mitochondrial function, SIRT3 concentrations in control fibroblasts, PH-Fibs, and lung tissues were determined using quantitative real-time PCR and western blot. SIRT3 deacetylase activity in cells and lung tissues was determined using western blot, immunohistochemistry staining, and immunoprecipitation. Glycolysis and mitochondrial function in fibroblasts were measured using respiratory analysis and fluorescence-lifetime imaging microscopy. The effects of restoring SIRT3 activity (by overexpression of SIRT3 with plasmid, activation SIRT3 with honokiol, and supplementation with the SIRT3 cofactor nicotinamide adenine dinucleotide [NAD+]) on mitochondrial protein acetylation, mitochondrial function, cell proliferation, and gene expression in PH-Fibs were also investigated. We found that SIRT3 concentrations were decreased in PH-Fibs and PH lung tissues, and its cofactor, NAD+, was also decreased in PH-Fibs. Increased acetylation in overall mitochondrial proteins and SIRT3-specific targets (MPC1 [mitochondrial pyruvate carrier 1] and MnSOD2 [mitochondrial superoxide dismutase]), as well as decreased MnSOD2 activity, was identified in PH-Fibs and PH lung tissues. Normalization of SIRT3 activity, by increasing its expression with plasmid or with honokiol and supplementation with its cofactor NAD+, reduced mitochondrial protein acetylation, improved mitochondrial function, inhibited proliferation, and induced apoptosis in PH-Fibs. Thus, our study demonstrated that restoration of SIRT3 activity in PH-Fibs can reduce mitochondrial protein acetylation and restore mitochondrial function and PH-Fib phenotype in PH.


Asunto(s)
Hipertensión Pulmonar , Sirtuina 3 , Humanos , Animales , Bovinos , Hipertensión Pulmonar/patología , Sirtuina 3/genética , Sirtuina 3/metabolismo , NAD/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fibroblastos/metabolismo
13.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298696

RESUMEN

This study analyzed microarray data of right ventricular (RV) tissue from rats exposed to pulmonary embolism to understand the initial dynamic transcriptional response to mechanical stress and compare it with experimental pulmonary hypertension (PH) models. The dataset included samples harvested from 55 rats at 11 different time points or RV locations. We performed principal component analysis (PCA) to explore clusters based on spatiotemporal gene expression. Relevant pathways were identified from fast gene set enrichment analysis using PCA coefficients. The RV transcriptomic signature was measured over several time points, ranging from hours to weeks after an acute increase in mechanical stress, and was found to be highly dependent on the severity of the initial insult. Pathways enriched in the RV outflow tracts of rats at 6 weeks after severe PE share many commonalities with experimental PH models, but the transcriptomic signature at the RV apex resembles control tissue. The severity of the initial pressure overload determines the trajectory of the transcriptomic response independent of the final afterload, but this depends on the location where the tissue is biopsied. Chronic RV pressure overload due to PH appears to progress toward similar transcriptomic endpoints.


Asunto(s)
Hipertensión Pulmonar , Embolia Pulmonar , Ratas , Animales , Ventrículos Cardíacos/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Hipertensión Pulmonar/metabolismo , Modelos Animales de Enfermedad , Remodelación Ventricular
14.
Am J Respir Cell Mol Biol ; 69(3): 340-354, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37201952

RESUMEN

Pulmonary microvascular endothelial cells contribute to the integrity of the lung gas exchange interface, and they are highly glycolytic. Although glucose and fructose represent discrete substrates available for glycolysis, pulmonary microvascular endothelial cells prefer glucose over fructose, and the mechanisms involved in this selection are unknown. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is an important glycolytic enzyme that drives glycolytic flux against negative feedback and links glycolytic and fructolytic pathways. We hypothesized that PFKFB3 inhibits fructose metabolism in pulmonary microvascular endothelial cells. We found that PFKFB3 knockout cells survive better than wild-type cells in fructose-rich medium under hypoxia. Seahorse assays, lactate and glucose measurements, and stable isotope tracing showed that PFKFB3 inhibits fructose-hexokinase-mediated glycolysis and oxidative phosphorylation. Microarray analysis revealed that fructose upregulates PFKFB3, and PFKFB3 knockout cells increase fructose-specific GLUT5 (glucose transporter 5) expression. Using conditional endothelial-specific PFKFB3 knockout mice, we demonstrated that endothelial PFKFB3 knockout increases lung tissue lactate production after fructose gavage. Last, we showed that pneumonia increases fructose in BAL fluid in mechanically ventilated ICU patients. Thus, PFKFB3 knockout increases GLUT5 expression and the hexokinase-mediated fructose use in pulmonary microvascular endothelial cells that promotes their survival. Our findings indicate that PFKFB3 is a molecular switch that controls glucose versus fructose use in glycolysis and help better understand lung endothelial cell metabolism during respiratory failure.


Asunto(s)
Células Endoteliales , Fructosa , Hexoquinasa , Animales , Ratones , Células Endoteliales/metabolismo , Glucosa/metabolismo , Lactatos , Pulmón/metabolismo , Fructosa/metabolismo
15.
Clin Sci (Lond) ; 137(8): 617-631, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37014925

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS: Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS: Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS: Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar , Esquistosomiasis , Humanos , Animales , Ratones , Hipertensión Pulmonar/etiología , Fibrosis Pulmonar/complicaciones , Schistosoma mansoni , Pulmón/patología , Esquistosomiasis/complicaciones , Esquistosomiasis/patología , Fibrosis
16.
Am J Respir Cell Mol Biol ; 69(2): 210-219, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37071849

RESUMEN

Endothelial dysfunction and inflammation contribute to the vascular pathology of coronavirus disease (COVID-19). However, emerging evidence does not support direct infection of endothelial or other vascular wall cells, and thus inflammation may be better explained as a secondary response to epithelial cell infection. In this study, we sought to determine whether lung endothelial or other resident vascular cells are susceptible to productive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and how local complement activation contributes to endothelial dysfunction and inflammation in response to hypoxia and SARS-CoV-2-infected lung alveolar epithelial cells. We found that ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane serine protease 2) mRNA expression in lung vascular cells, including primary human lung microvascular endothelial cells (HLMVECs), pericytes, smooth muscle cells, and fibroblasts, was 20- to 90-fold lower compared with primary human alveolar epithelial type II cells. Consistently, we found that HLMVECs and other resident vascular cells were not susceptible to productive SARS-CoV-2 infection under either normoxic or hypoxic conditions. However, viral uptake without replication (abortive infection) was observed in HLMVECs when exposed to conditioned medium from SARS-CoV-2-infected human ACE2 stably transfected A549 epithelial cells. Furthermore, we demonstrated that exposure of HLMVECs to conditioned medium from SARS-CoV-2-infected human ACE2 stably transfected A549 epithelial cells and hypoxia resulted in upregulation of inflammatory factors such as ICAM-1 (intercellular adhesion molecule 1), VCAM-1 (vascular cell adhesion molecule 1), and IL-6 (interleukin 6) as well as complement components such as C3 (complement C3), C3AR1 (complement C3a receptor 1), C1QA (complement C1q A chain), and CFB (complement factor B). Taken together, our data support a model in which lung endothelial and vascular dysfunction during COVID-19 involves the activation of complement and inflammatory signaling and does not involve productive viral infection of endothelial cells.


Asunto(s)
COVID-19 , Humanos , COVID-19/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Células Endoteliales/metabolismo , Medios de Cultivo Condicionados , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Pulmón/patología , Inflamación/metabolismo , Proteínas del Sistema Complemento/metabolismo
17.
Am J Respir Cell Mol Biol ; 69(1): 73-86, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36944195

RESUMEN

Hypoxia-inducible factor (HIF) has received much attention as a potential pulmonary hypertension (PH) treatment target because inhibition of HIF reduces the severity of established PH in rodent models. However, the limitations of small-animal models of PH in predicting the therapeutic effects of pharmacologic interventions in humans PH are well known. Therefore, we sought to interrogate the role of HIFs in driving the activated phenotype of PH cells from human and bovine vessels. We first established that pulmonary arteries (PAs) from human and bovine PH lungs exhibit markedly increased expression of direct HIF target genes (CA9, GLUT1, and NDRG1), as well as cytokines/chemokines (CCL2, CSF2, CXCL12, and IL6), growth factors (FGF1, FGF2, PDGFb, and TGFA), and apoptosis-resistance genes (BCL2, BCL2L1, and BIRC5). The expression of the genes found in the intact PAs was determined in endothelial cells, smooth muscle cells, and fibroblasts cultured from the PAs. The data showed that human and bovine pulmonary vascular fibroblasts from patients or animals with PH (termed PH-Fibs) were the cell type that exhibited the highest level and the most significant increases in the expression of cytokines/chemokines and growth factors. In addition, we found that human, but not bovine, PH-Fibs exhibit consistent misregulation of HIFα protein stability, reduced HIF1α protein hydroxylation, and increased expression of HIF target genes even in cells grown under normoxic conditions. However, whereas HIF inhibition reduced the expression of direct HIF target genes, it had no impact on other "persistently activated" genes. Thus, our study indicated that HIF inhibition alone is not sufficient to reverse the persistently activated phenotype of human and bovine PH-Fibs.


Asunto(s)
Hipertensión Pulmonar , Animales , Humanos , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Fenotipo , Citocinas/metabolismo , Arteria Pulmonar/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Hipoxia/complicaciones , Fibroblastos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Cultivadas
18.
Am J Physiol Heart Circ Physiol ; 324(6): H804-H820, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36961489

RESUMEN

Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Animales , Bovinos , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Mecanotransducción Celular , Proteómica , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/metabolismo , Ventrículos Cardíacos , Modelos Animales de Enfermedad , Hipoxia , Remodelación Ventricular , Función Ventricular Derecha , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/complicaciones
19.
Vascul Pharmacol ; 149: 107157, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36849042

RESUMEN

RATIONALE: Sildenafil, a well-known vasodilator known to interfere with purinergic signaling through effects on cGMP, is a mainstay in the treatment of pulmonary hypertension (PH). However, little is known regarding its effects on the metabolic reprogramming of vascular cells, which is a hallmark of PH. Purine metabolism, especially intracellular de novo purine biosynthesis is essential for vascular cell proliferation. Since adventitial fibroblasts are critical contributors to proliferative vascular remodeling in PH, in this study we aimed to investigate if sildenafil, beyond its well-known vasodilator role in smooth muscle cells, impacts intracellular purine metabolism and proliferation of fibroblasts derived from human PH patients. METHODS: Integrated omics approaches (plasma and cell metabolomics) and pharmacological inhibitor approaches were employed in plasma samples and cultured pulmonary artery fibroblasts from PH patients. MEASUREMENTS AND MAIN RESULTS: Plasma metabolome analysis of 27 PH patients before and after treatment with sildenafil, demonstrated a partial, but specific effect of sildenafil on purine metabolites, especially adenosine, adenine, and xanthine. However, circulating markers of cell stress, including lactate, succinate, and hypoxanthine were only decreased in a small subset of sildenafil-treated patients. To better understand potential effects of sildenafil on pathological changes in purine metabolism (especially purine synthesis) in PH, we performed studies on pulmonary fibroblasts from PAH patients (PH-Fibs) and corresponding controls (CO-Fibs), since these cells have previously been shown to demonstrate stable and marked PH associated phenotypic and metabolic changes. We found that PH-Fibs exhibited significantly increased purine synthesis. Treatment of PH-Fibs with sildenafil was insufficient to normalize cellular metabolic phenotype and only modestly attenuated the proliferation. However, we observed that treatments which have been shown to normalize glycolysis and mitochondrial abnormalities including a PKM2 activator (TEPP-46), and the histone deacetylase inhibitors (HDACi), SAHA and Apicidin, had significant inhibitory effects on purine synthesis. Importantly, combined treatment with HDACi and sildenafil exhibited synergistic inhibitory effects on proliferation and metabolic reprogramming in PH-Fibs. CONCLUSIONS: While sildenafil alone partially rescues metabolic alterations associated with PH, treatment with HDACi, in combination with sildenafil, represent a promising and potentially more effective strategy for targeting vasoconstriction, metabolic derangement and pathological vascular remodeling in PH.


Asunto(s)
Hipertensión Pulmonar , Humanos , Citrato de Sildenafil/farmacología , Citrato de Sildenafil/uso terapéutico , Hipertensión Pulmonar/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/metabolismo , Remodelación Vascular , Vasodilatadores/farmacología , Arteria Pulmonar , Purinas/metabolismo , Purinas/farmacología , Purinas/uso terapéutico , Proliferación Celular
20.
ERJ Open Res ; 9(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36776484

RESUMEN

Background: Pulmonary arterial hypertension (PAH) is a heterogeneous and complex pulmonary vascular disease associated with substantial morbidity. Machine-learning algorithms (used in many PAH risk calculators) can combine established parameters with thousands of circulating biomarkers to optimise PAH prognostication, but these approaches do not offer the clinician insight into what parameters drove the prognosis. The approach proposed in this study diverges from other contemporary phenotyping methods by identifying patient-specific parameters driving clinical risk. Methods: We trained a random forest algorithm to predict 4-year survival risk in a cohort of 167 adult PAH patients evaluated at Stanford University, with 20% withheld for (internal) validation. Another cohort of 38 patients from Sheffield University were used as a secondary (external) validation. Shapley values, borrowed from game theory, were computed to rank the input parameters based on their importance to the predicted risk score for the entire trained random forest model (global importance) and for an individual patient (local importance). Results: Between the internal and external validation cohorts, the random forest model predicted 4-year risk of death/transplant with sensitivity and specificity of 71.0-100% and 81.0-89.0%, respectively. The model reinforced the importance of established prognostic markers, but also identified novel inflammatory biomarkers that predict risk in some PAH patients. Conclusion: These results stress the need for advancing individualised phenotyping strategies that integrate clinical and biochemical data with outcome. The computational platform presented in this study offers a critical step towards personalised medicine in which a clinician can interpret an algorithm's assessment of an individual patient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA