Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 8: 2664, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29379473

RESUMEN

The mucosal surfaces and associated microbiota of fish are an important primary barrier and provide the first line of defense against potential pathogens. An understanding of the skin and gill microbial assemblages and the factors which drive their composition may provide useful insights into the broad dynamics of fish host-microbial relationships, and may reveal underlying changes in health status. This is particularly pertinent to cultivated systems whereby various stressors may led to conditions (like enteritis) which impinge on productivity. As an economically important species, we assessed whether the outer-surface bacterial communities reflect a change in gut health status of cultivated Yellowtail Kingfish (Seriola lalandi). Active bacterial assemblages were surveyed from RNA extracts from swabs of the skin and gills by constructing Illumina 16S rRNA gene amplicon libraries. Proteobacteria and Bacteroidetes were predominant in both the skin and gills, with enrichment of key ß-proteobacteria in the gills (Nitrosomonadales and Ferrovales). Fish exhibiting early stage chronic lymphocytic enteritis comprised markedly different global bacterial assemblages compared to those deemed healthy and exhibiting late stages of the disease. This corresponded to an overall loss of diversity and enrichment of Proteobacteria and Actinobacteria, particularly in the gills. In contrast, bacterial assemblages of fish with late stage enteritis were generally similar to those of healthy individuals, though with some distinct taxa. In conclusion, gut health status is an important factor which defines the skin and gill bacterial assemblages of fish and likely reflects changes in immune states and barrier systems during the early onset of conditions like enteritis. This study represents the first to investigate the microbiota of the outer mucosal surfaces of fish in response to underlying chronic gut enteritis, revealing potential biomarkers for assessing fish health in commercial aquaculture systems.

2.
Prev Vet Med ; 122(1-2): 181-94, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452601

RESUMEN

The movement of ornamental fish through international trade is a major factor for the transboundary spread of pathogens. In Australia, ornamental fish which may carry dwarf gourami iridovirus (DGIV), a strain of Infectious spleen and kidney necrosis virus (ISKNV), have been identified as a biosecurity risk despite relatively stringent import quarantine measures being applied. In order to gain knowledge of the potential for DGIV to enter Australia, imported ornamental fish were sampled prior to entering quarantine, during quarantine, and post quarantine from wholesalers and aquatic retail outlets in Australia. Samples were tested by quantitative polymerase chain reaction (qPCR) for the presence of megalocytivirus. Farmed and wild ornamental fish were also tested. Megalocytivirus was detected in ten of fourteen species or varieties of ornamental fish. Out of the 2086 imported gourami tested prior to entering quarantine, megalocytivirus was detected in 18.7% of fish and out of the 51 moribund/dead ornamental fish tested during the quarantine period, 68.6% were positive for megalocytivirus. Of fish from Australian wholesalers and aquatic retail outlets 14.5% and 21.9%, respectively, were positive. Out of 365 farmed ornamental fish, ISKNV-like megalocytivirus was detected in 1.1%; these were Platy (Xiphophorus maculatus). Megalocytivirus was not detected in free-living breeding populations of Blue gourami (Trichopodus trichopterus) caught in Queensland. This study showed that imported ornamental fish are vectors for DGIV and it was used to support an import risk analysis completed by the Australian Department of Agriculture. Subsequently, the national biosecurity policy was revised and from 1 March 2016, a health certification is required for susceptible families of fish to be free of this virus prior to importation.


Asunto(s)
Animales Domésticos , Ciprinodontiformes , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/epidemiología , Iridoviridae/aislamiento & purificación , Cuarentena/veterinaria , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Australia/epidemiología , Secuencia de Bases , Comercio , Infecciones por Virus ADN/diagnóstico , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/virología , Enfermedades de los Peces/virología , Filogenia , Medición de Riesgo , Alineación de Secuencia/veterinaria , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Dis Aquat Organ ; 100(3): 219-30, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22968790

RESUMEN

Mulloway Argyrosomus japonicus is a native fish species in Western Australia, for which aquaculture production has recently been developed. A single cohort was stocked in a cage offshore at Geraldton, Western Australia, at a water depth of 6 m. Fish appeared healthy before stocking. Routine histological analysis was carried out from 10 mo post stocking and until completion of harvest (about 2.5 yr post stocking). No gross pathology was evident. Microscopically, however, granulomatous lesions were present in the kidneys of almost 100% of the fish examined. Enclosed in the granuloma was an aggregate of organisms, 4.2 to 5.4 µm in diameter. Kidney granulomas appeared as multi-focal aggregates. Granulomas at different stages of formation and finally fibrosing granulomas were observed. Granulomas also appeared infrequently in other organs: a few granulomas were found in the liver and spleen and a single granuloma in the heart of one fish. Transmission electron microscopy (TEM) revealed that the organism was composed of 2 cells, an outer cell enclosing an inner cell. The inner cell was surrounded by a double membrane and the outer cell by a single membrane. Cellular material, presumably of parasitic nature, surrounded the outer cell. The organism contained primitive mitochondria and abundant free ribosomes. Small subunit ribosomal DNA (SSU rDNA) sequence obtained by PCR revealed an 84% sequence identity with the myxosporean Latyspora scomberomori. Based on TEM and preliminary molecular results, we suggest that the organism is the extrasporogonic developmental stage of a myxozoan parasite, which failed to form spores in the mulloway host.


Asunto(s)
Enfermedades de los Peces/patología , Enfermedades Renales/veterinaria , Enfermedades Parasitarias en Animales/parasitología , Perciformes , Animales , Acuicultura , Riñón/patología , Enfermedades Renales/patología , Myxozoa/clasificación , Myxozoa/genética , Myxozoa/aislamiento & purificación , Enfermedades Parasitarias en Animales/patología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...