Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Astron (Dordr) ; 52(3): 407-437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153378

RESUMEN

The proposed THESEUS mission will vastly expand the capabilities to monitor the high-energy sky. It will specifically exploit large samples of gamma-ray bursts to probe the early universe back to the first generation of stars, and to advance multi-messenger astrophysics by detecting and localizing the counterparts of gravitational waves and cosmic neutrino sources. The combination and coordination of these activities with multi-wavelength, multi-messenger facilities expected to be operating in the 2030s will open new avenues of exploration in many areas of astrophysics, cosmology and fundamental physics, thus adding considerable strength to the overall scientific impact of THESEUS and these facilities. We discuss here a number of these powerful synergies and guest observer opportunities.

2.
Phys Rev Lett ; 86(7): 1148-51, 2001 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-11178031

RESUMEN

The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications, provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3D general-relativistic hydrodynamical evolutions. We find that (1) on dynamical time scales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one-the maximum r-mode amplitude is of order unity. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes. (3) The kinematical drift associated with r-modes appears to be present in our simulations, but confirmation requires more precise initial data.

3.
Astrophys J ; 534(1): L75-L78, 2000 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10790075

RESUMEN

We present a simple spin-evolution model that predicts that rapidly rotating accreting neutron stars will be confined mainly to a narrow range of spin frequencies: P=1.5-5 ms. This is in agreement with current observations of neutron stars in both the low-mass X-ray binaries and the millisecond radio pulsars. The main ingredients in the model are (1) the instability of r-modes above a critical spin rate, (2) the thermal runaway that is due to the heat released as viscous damping mechanisms counteract the r-mode growth, and (3) a revised estimate of the strength of the dissipation that is due to the presence of a viscous boundary layer at the base of the crust in an old and relatively cold neutron star. We discuss the gravitational waves that are radiated during the brief r-mode-driven spin-down phase. We also briefly touch on how the new estimates affect the predicted initial spin periods of hot young neutron stars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...