Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(17): 15862-15872, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39161321

RESUMEN

Carbonic anhydrases (CAs) are a family of enzymes that play an important pH regulatory role in health and disease. While different CA isozymes have a high degree of structural similarity, they have variable enzymatic activity, with CA III being the least active and having less than 1% of the activity of CA II, the most active. Furthermore, ligand binding studies for CA III are limited, and a resulting lack of chemical probes impedes understanding of this CA isozyme in comparison to other CA family members where studies are abundant. Therefore, we employed native mass spectrometry (nMS), also known as intact mass spectrometry, to assess ligand binding to CA II and CA III and discovered two novel compounds that for the first time display strong binding to CA III. We present a new data visualization and quantification tool developed to display native mass spectra as an intuitive stacked heat map representation for rapidly interpreting the results of ligand-protein binding from nMS screening.


Asunto(s)
Dominio Catalítico , Espectrometría de Masas , Ligandos , Espectrometría de Masas/métodos , Humanos , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica II/química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Unión Proteica , Sitios de Unión
2.
RSC Med Chem ; 15(7): 2270-2285, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39026646

RESUMEN

Native mass spectrometry (nMS) is well established as a biophysical technique for characterising biomolecules and their interactions with endogenous or investigational small molecule ligands. The high sensitivity mass measurements make nMS particularly well suited for applications in fragment-based drug discovery (FBDD) screening campaigns where the detection of weakly binding ligands to a target biomolecule is crucial. We first reviewed the contributions of nMS to guiding FBDD hit identification in 2013, providing a comprehensive perspective on the early adoption of nMS for fragment screening. Here we update this initial progress with a focus on contributions of nMS that have guided FBDD for the period 2014 until end of 2023. We highlight the development of nMS adoption in FBDD in the context of other biophysical fragment screening techniques. We also discuss the roadmap for increased adoption of nMS for fragment screening beyond soluble proteins, including for guiding the discovery of fragments supporting advances in PROTAC discovery, RNA-binding small molecules and covalent therapeutic drug discovery.

3.
ACS Pharmacol Transl Sci ; 7(7): 1983-1995, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022364

RESUMEN

The KRAS gene plays a pivotal role in numerous cancers by encoding a GTPase that upon association with the plasma membrane activates the MAPK pathway, promoting cellular proliferation. In our study, we investigated small molecules that disrupt KRAS's membrane interaction, hypothesizing that such disruption could in turn inhibit mutant RAS signaling. Native mass spectrometry screening of KRAS-FMe identified compounds with a preference for interacting with the hypervariable region (HVR), and surface plasmon resonance (SPR) further refined our selection to graveoline as a compound exhibiting preferential HVR binding. Subsequent nuclear magnetic resonance (NMR) analysis showed that graveoline's interaction with KRAS depends on C-terminal O-methylation. Moreover, our findings revealed multiple interaction sites, suggesting weak engagement with the KRAS G domain. Using nanodiscs as a membrane mimetic, further characterization through NMR and Förster resonance energy transfer (FRET) studies demonstrated graveoline's ability to perturb KRAS membrane interaction in a biochemical setting. Our biophysical approach sheds light on the intricate molecular mechanisms underlying KRAS-ligand interactions, providing valuable insights into understanding the KRAS-associated pathophysiology. These findings contribute to the translational aspect of our study, offering potential avenues for further research targeting KRAS membrane association with the potential to lead to a new class of RAS therapeutics.

4.
Anal Chem ; 95(51): 18655-18666, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38090751

RESUMEN

Native mass spectrometry (nMS) is one of the most powerful biophysical methods for the direct observation of noncovalent protein interactions with both small molecules and other proteins. With the advent of targeted protein degradation (TPD), nMS is now emerging as a compelling approach to characterize the multiple fundamental interactions that underpin the TPD mechanism. Specifically, nMS enables the simultaneous observation of the multiple binary and ternary complexes [i.e., all combinations of E3 ligase, target protein of interest, and small molecule proximity-inducing reagents (such as PROteolysis TArgeting Chimeras (PROTACs) and molecular glues)], formed as part of the TPD equilibrium; this is not possible with any other biophysical method. In this paper we overview the proof-of-concept applications of nMS within the field of TPD and demonstrate how it is providing researchers with critical insight into the systems under study. We also provide an outlook on the scope and future opportunities offered by nMS as a core and agnostic biophysical tool for advancing research developments in TPD.


Asunto(s)
Ubiquitina-Proteína Ligasas , Proteolisis , Biofisica , Espectrometría de Masas
5.
ChemMedChem ; 16(14): 2206-2210, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33792163

RESUMEN

PROteolysis TArgeting Chimeras (PROTACs) promote the degradation, rather than inhibition, of a drug target as a mechanism for therapeutic treatment. Bifunctional PROTAC molecules allow simultaneous binding of both the target protein and an E3-Ubiquitin ligase, bringing the two proteins into close spatial proximity to allow ubiquitinylation and degradation of the target protein via the cell's endogenous protein degradation pathway. We utilized native mass spectrometry (MS) to study the ternary complexes promoted by the previously reported PROTAC GNE-987 between Brd4 bromodomains 1 and 2, and Von Hippel Lindeau E3-Ubiquitin Ligase. Native MS at high resolution allowed us to measure ternary complex formation as a function of PROTAC concentration to provide a measure of complex affinity and stability, whilst simultaneously measuring other intermediate protein species. Native MS provides a high-throughput, low sample consumption, direct screening method to measure ternary complexes for PROTAC development.


Asunto(s)
Amidas , Proteínas de Ciclo Celular , Factores de Transcripción , Ubiquitina-Proteína Ligasas , Humanos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Espectrometría de Masas , Estructura Molecular , Proteolisis/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Amidas/química
6.
Arch Biochem Biophys ; 691: 108509, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32717225

RESUMEN

Biotin protein ligase (BPL) is an essential enzyme in all kingdoms of life, making it a potential target for novel anti-infective agents. Whilst bacteria and archaea have simple BPL structures (class I and II), the homologues from certain eukaryotes such as mammals, insects and yeast (class III) have evolved a more complex structure with a large extension on the N-terminus of the protein in addition to the conserved catalytic domain. The absence of atomic resolution structures of any class III BPL hinders structural and functional analysis of these enzymes. Here, two new class III BPLs from agriculturally important moulds Botrytis cinerea and Zymoseptoria tritici were characterised alongside the homologue from the prototypical yeast Saccharomyces cerevisiae. Circular dichroism and ion mobility-mass spectrometry analysis revealed conservation of the overall tertiary and secondary structures of all three BPLs, corresponding with the high sequence similarity. Subtle structural differences were implied by the different thermal stabilities of the enzymes and their varied Michaelis constants for their interactions with ligands biotin, MgATP, and biotin-accepting substrates from different species. The three BPLs displayed different preferences for fungal versus bacterial protein substrates, providing further evidence that class III BPLs have a 'substrate validation' activity for selecting only appropriate proteins for biotinylation. Selective, potent inhibition of these three BPLs was demonstrated despite sequence and structural homology. This highlights the potential for targeting BPL for novel, selective antifungal therapies against B. cinerea, Z. tritici and other fungal species.


Asunto(s)
Ligasas de Carbono-Nitrógeno/química , Proteínas Fúngicas/química , Ascomicetos/enzimología , Botrytis/enzimología , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inhibidores , Conformación Proteica , Estabilidad Proteica , Desplegamiento Proteico , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato
7.
Antibiotics (Basel) ; 9(4)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268615

RESUMEN

Biotin protein ligase (BPL) inhibitors are a novel class of antibacterial that target clinically important methicillin-resistant Staphylococcus aureus (S. aureus). In S. aureus, BPL is a bifunctional protein responsible for enzymatic biotinylation of two biotin-dependent enzymes, as well as serving as a transcriptional repressor that controls biotin synthesis and import. In this report, we investigate the mechanisms of action and resistance for a potent anti-BPL, an antibacterial compound, biotinyl-acylsulfamide adenosine (BASA). We show that BASA acts by both inhibiting the enzymatic activity of BPL in vitro, as well as functioning as a transcription co-repressor. A low spontaneous resistance rate was measured for the compound (<10-9) and whole-genome sequencing of strains evolved during serial passaging in the presence of BASA identified two discrete resistance mechanisms. In the first, deletion of the biotin-dependent enzyme pyruvate carboxylase is proposed to prioritize the utilization of bioavailable biotin for the essential enzyme acetyl-CoA carboxylase. In the second, a D200E missense mutation in BPL reduced DNA binding in vitro and transcriptional repression in vivo. We propose that this second resistance mechanism promotes bioavailability of biotin by derepressing its synthesis and import, such that free biotin may outcompete the inhibitor for binding BPL. This study provides new insights into the molecular mechanisms governing antibacterial activity and resistance of BPL inhibitors in S. aureus.

8.
Sci Rep ; 9(1): 2767, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808984

RESUMEN

An adequate supply of biotin is vital for the survival and pathogenesis of Staphylococcus aureus. The key protein responsible for maintaining biotin homeostasis in bacteria is the biotin retention protein A (BirA, also known as biotin protein ligase). BirA is a bi-functional protein that serves both as a ligase to catalyse the biotinylation of important metabolic enzymes, as well as a transcriptional repressor that regulates biotin biosynthesis, biotin transport and fatty acid elongation. The mechanism of BirA regulated transcription has been extensively characterized in Escherichia coli, but less so in other bacteria. Biotin-induced homodimerization of E. coli BirA (EcBirA) is a necessary prerequisite for stable DNA binding and transcriptional repression. Here, we employ a combination of native mass spectrometry, in vivo gene expression assays, site-directed mutagenesis and electrophoretic mobility shift assays to elucidate the DNA binding pathway for S. aureus BirA (SaBirA). We identify a mechanism that differs from that of EcBirA, wherein SaBirA is competent to bind DNA as a monomer both in the presence and absence of biotin and/or MgATP, allowing homodimerization on the DNA. Bioinformatic analysis demonstrated the SaBirA sequence used here is highly conserved amongst other S. aureus strains, implying this DNA-binding mechanism is widely employed.


Asunto(s)
Proteínas Bacterianas/química , ADN/química , Proteínas Represoras/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Staphylococcus aureus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , ADN/metabolismo , Dimerización , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Nanotecnología , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo
9.
Trends Biochem Sci ; 42(5): 383-394, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28268045

RESUMEN

Protein biotinylation is a key post-translational modification found throughout the living world. The covalent attachment of a biotin cofactor onto specific metabolic enzymes is essential for their activity. This modification is distinctive, in that it is carried out by a single enzyme: biotin protein ligase (BPL), an enzyme that is able to biotinylate multiple target substrates without aberrant-off target biotinylation. BPL achieves this target selectivity by recognizing a sequence motif in the context of a highly conserved tertiary structure. One structural class of BPLs has developed an additional 'substrate verification' mechanism to further enable appropriate protein selection. This is crucial for the precise and selective biotinylation required for efficient biotin management, especially in organisms that are auxotrophic for biotin.


Asunto(s)
Biotina/metabolismo , Biotinilación , Ligasas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...