Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 4(3): e992, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439570

RESUMEN

Oxylipins are oxidized metabolites of polyunsaturated fatty acids (PUFAs). They represent a class of risk markers and/or therapeutic targets for diseases associated with inflammation, including cardiovascular disease and brain disorders. Because the biological activities of free PUFAs and oxylipins depend on their chemical structures and concentrations, monitoring PUFAs and oxylipin levels in biological systems is critical for understanding their roles in health and disease. Traditionally, accurate quantification of free PUFAs and oxylipins in biological samples was performed separately, as PUFAs are often 1000-fold more abundant than the derived oxidized fatty acids (oxylipins). This article describes a liquid chromatography multiple reaction monitoring tandem mass spectrometry method for the quantitative analysis of five free PUFAs and 88 oxylipins in various biological fluids, including plasma, platelet supernatants, and tissues. The same approach can also be used in conjunction with an alkaline hydrolysis step to quantify total oxylipins in fish oils. We observed that in some samples, linoleic acid levels in plasma and eicosapentaenoic acid and arachidonic acid levels in brain tissue were above the upper limit of quantification. To address this issue, we developed a data analysis method to obtain PUFA and oxylipin concentrations in these samples without additional sample preparation, thus significantly saving time and labor. © 2024 Wiley Periodicals LLC. Basic Protocol: Quantification of polyunsaturated fatty acids (PUFAs) and oxylipins using liquid chromatography multiple reaction monitoring tandem mass spectrometry Support Protocol 1: Preparation of internal standard mixed working solution Support Protocol 2: Preparation of standard mixed stock solution Support Protocol 3: Preparation of standard mixed working solution Alternate Protocol 1: Extraction and quantitation of free PUFAs and oxylipins from mouse brain tissue Alternate Protocol 2: Extraction and quantitation of total PUFAs and oxylipins from fish oil.


Asunto(s)
Ácidos Grasos , Oxilipinas , Animales , Ratones , Estrés Oxidativo , Ácidos Grasos no Esterificados , Ácido Linoleico , Aceites de Pescado
2.
Gut Microbes ; 16(1): 2315633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358253

RESUMEN

Xanthohumol (XN), a polyphenol found in the hop plant (Humulus lupulus), has antioxidant, anti-inflammatory, prebiotic, and anti-hyperlipidemic activity. Preclinical evidence suggests the gut microbiome is essential in mediating these bioactivities; however, relatively little is known about XN's impact on human gut microbiota in vivo. We conducted a randomized, triple-blinded, placebo-controlled clinical trial (ClinicalTrials.gov NCT03735420) to determine safety and tolerability of XN in healthy adults. Thirty healthy participants were randomized to 24 mg/day XN or placebo for 8 weeks. As secondary outcomes, quantification of bacterial metabolites and 16S rRNA gene sequencing were utilized to explore the relationships between XN supplementation, gut microbiota, and biomarkers of gut health. Although XN did not significantly change gut microbiota composition, it did re-shape individual taxa in an enterotype-dependent manner. High levels of inter-individual variation in metabolic profiles and bioavailability of XN metabolites were observed. Moreover, reductions in microbiota-derived bile acid metabolism were observed, which were specific to Prevotella and Ruminococcus enterotypes. These results suggest interactions between XN and gut microbiota in healthy adults are highly inter-individualized and potentially indicate that XN elicits effects on gut health in an enterotype-dependent manner.


Asunto(s)
Microbioma Gastrointestinal , Propiofenonas , Adulto , Humanos , ARN Ribosómico 16S/genética , Flavonoides/farmacología , Prebióticos
3.
Molecules ; 29(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38398590

RESUMEN

Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aß cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid ß-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aß-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.


Asunto(s)
Enfermedad de Alzheimer , Centella , Ácido Quínico/análogos & derivados , Triterpenos , Humanos , Péptidos beta-Amiloides/toxicidad , Enfermedad de Alzheimer/tratamiento farmacológico , Extractos Vegetales/farmacología , Cognición , Centella/química , Triterpenos/análisis , Bioensayo , Simulación por Computador
4.
Mol Nutr Food Res ; 68(4): e2300286, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38143283

RESUMEN

SCOPE: The glucosinolate glucoraphanin from broccoli is converted to sulforaphane (SFN) or sulforaphane-nitrile (SFN-NIT) by plant enzymes or the gut microbiome. Human feeding studies typically observe high inter-individual variation in absorption and excretion of SFN, however, the source of this variation is not fully known. To address this, a human feeding trial to comprehensively evaluate inter-individual variation in the absorption and excretion of all known SFN metabolites in urine, plasma, and stool, and tested the hypothesis that gut microbiome composition influences inter-individual variation in total SFN excretion has been conducted. METHODS AND RESULTS: Participants (n = 55) consumed a single serving of broccoli or alfalfa sprouts and plasma, stool, and total urine are collected over 72 h for quantification of SFN metabolites and gut microbiome profiling using 16S gene sequencing. SFN-NIT excretion is markedly slower than SFN excretion (72 h vs 24 h). Members of genus Bifidobacterium, Dorea, and Ruminococcus torques are positively associated with SFN metabolite excretion while members of genus Alistipes and Blautia has a negative association. CONCLUSION: This is the first report of SFN-NIT metabolite levels in human plasma, urine, and stool following consumption of broccoli sprouts. The results help explain factors driving inter-individual variation in SFN metabolism and are relevant for precision nutrition.


Asunto(s)
Brassica , Microbioma Gastrointestinal , Nitrilos , Humanos , Isotiocianatos/metabolismo , Sulfóxidos/metabolismo , Glucosinolatos/metabolismo
5.
J Chromatogr Open ; 42023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37789901

RESUMEN

Centella asiatica (CA) is a culinary vegetable and well-known functional food that is widely used as a medicinal herb and dietary supplement. CA is rich in pentacyclic triterpenes (TTs), including asiaticoside (AS), madecassoside (MS) and the related aglycones asiatic acid (AA), madecassic acid (MA). Traditionally, TTs have been associated with the bioactivity and health promoting effect of CA. Recently, mono-caffeoylquinic acids (MonoCQAs) and di-caffeoylquinic acids (DiCQAs) have been found to contribute to the bioactivity of CA as well. This work reports an analytical strategy based on liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM-MS) for the simultaneous rapid and accurate quantification of 12 bioactive compounds in CA, namely AS, MS, AA, MA, 5-CQA, 4-CQA, 3-CQA, 1,3-DiCQA, 3,4-DiCQA, 1,5-DiCQA, 3,5-DiCQA, 4,5-DiCQA. Method selectivity, accuracy, precision, repeatability, robustness, linearity range, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The validated LC-MRM-MS method has been successfully applied to quantify the 12 bioactive compounds in CA aqueous extracts and two related formulations: a standardized CA product (CAP) used in a phase I clinical trial and formulated CA rodent diets used in preclinical studies. The validated method allows us to support the standardization of CA products used for clinical trials and conduct routine LC-MRM-MS analyses of formulated preclinical diets to confirm correct levels of CA phytochemical markers.

6.
RSC Adv ; 13(42): 29324-29331, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37829707

RESUMEN

Xanthohumol, the principle prenylflavonoid found in hops (Humulus lupulus) and a reported anti-inflammatory agent, has great potential for pharmaceutical interventions related to inflammatory disorders in the gut. A suite of probes was prepared from xanthohumol and its structural isomer isoxanthohumol to enable profiling of both protein affinity binding and catalytic enzyme reactivity. The regiochemistry of the reactive group on the probes was altered to reveal how probe structure dictates protein labeling, and which probes best emulate the natural flavonoids. Affinity- and activity-based probes were applied to Escherichia coli, and protein labeling was measured by chemoproteomics. Structurally dependent activity-based probe protein labeling demonstrates how subtle alterations in flavonoid structure and probe reactive groups can result in considerably different protein interactions. This work lays the groundwork to expand upon unexplored cellular activities related to xanthohumol interactions, metabolism, and anti-inflammatory mechanisms.

7.
Curr Res Food Sci ; 6: 100521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266414

RESUMEN

Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.

8.
Blood Adv ; 7(8): 1366-1378, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36219587

RESUMEN

Low-density lipoprotein (LDL) contributes to atherogenesis and cardiovascular disease through interactions with peripheral blood cells, especially platelets. However, mechanisms by which LDL affects platelet activation and atherothrombosis, and how to best therapeutically target and safely prevent such responses remain unclear. Here, we investigate how oxidized low-density lipoprotein (oxLDL) enhances glycoprotein VI (GPVI)-mediated platelet hemostatic and procoagulant responses, and how traditional and emerging antiplatelet therapies affect oxLDL-enhanced platelet procoagulant activity ex vivo. Human platelets were treated with oxLDL and the GPVI-specific agonist, crosslinked collagen-related peptide, and assayed for hemostatic and procoagulant responses in the presence of inhibitors of purinergic receptors (P2YR), cyclooxygenase (COX), and tyrosine kinases. Ex vivo, oxLDL enhanced GPVI-mediated platelet dense granule secretion, α-granule secretion, integrin activation, thromboxane generation and aggregation, as well as procoagulant phosphatidylserine exposure and fibrin generation. Studies of washed human platelets, as well as platelets from mouse and nonhuman primate models of hyperlipidemia, further determined that P2YR antagonists (eg, ticagrelor) and Bruton tyrosine kinase inhibitors (eg, ibrutinib) reduced oxLDL-mediated platelet responses and procoagulant activity, whereas COX inhibitors (eg, aspirin) had no significant effect. Together, our results demonstrate that oxLDL enhances GPVI-mediated platelet procoagulant activity in a manner that may be more effectively reduced by P2YR antagonists and tyrosine kinase inhibitors compared with COX inhibitors.


Asunto(s)
Hemostáticos , Inhibidores de Agregación Plaquetaria , Humanos , Ratones , Animales , Inhibidores de Agregación Plaquetaria/farmacología , Lipoproteínas LDL/farmacología
9.
Dis Model Mech ; 15(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36353888

RESUMEN

Xanthohumol (XN) improves cognition of wild-type rodents on a high-fat diet (HFD). Bile acids and ceramide levels in the liver and hippocampus might be linked to these effects. XN modulates activity of the nuclear farnesoid X receptor (FXR; also known as NR1H4), the primary receptor for bile acids. To determine the role of FXR in the liver and intestine in mediating the effects of XN on cognitive performance, mice with intestine- and liver-specific FXR ablation (FXRIntestine-/- and FXRLiver-/-, respectively) on an HFD or an HFD containing XN were cognitively tested. XN improved cognitive performance in a genotype- and sex-dependent manner, with improved task learning in females (specifically wild-type), reversal learning in males (specifically wild-type and FXRIntestine-/- mutant) and spatial learning (both sexes). XN increased hippocampal diacylglycerol and sphingomyelin levels in females but decreased them in males. XN increased the ratio of shorter-chain to longer-chain ceramides and hexaceramides. Higher diacylglycerol and lower longer-chain ceramide and hexaceramide levels were linked to improved cognitive performance. Thus, the beneficial sex-dependent cognitive effects of XN are linked to changes in hippocampal diacylglycerol and ceramide levels. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Dieta Alta en Grasa , Diglicéridos , Masculino , Ratones , Animales , Hígado , Ácidos y Sales Biliares , Ceramidas , Cognición , Ratones Endogámicos C57BL
10.
Trials ; 23(1): 885, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273173

RESUMEN

BACKGROUND: Xanthohumol (XN), a bioactive flavonoid from Humulus lupulus with anti-inflammatory properties, has potential benefits for patients with Crohn's disease (CD), a type of inflammatory bowel disease. We recently completed and published results of a placebo-controlled phase I clinical trial demonstrating the safety and tolerability of 24 mg XN daily for 8 weeks. The present study aims to evaluate the safety and tolerability of the same dose of XN adults with clinically active CD in a placebo-controlled phase II clinical trial. Additional aims will assess the impact of XN on inflammatory biomarkers, platelet function, CD clinical activity, and stool microbial composition. The metabolism of XN will also be evaluated. This article provides a model protocol for consideration in investigations of XN or other natural products in disease states. METHODS: A triple-masked, randomized, placebo-controlled trial will be conducted in adults with clinically active CD. Participants (n ≤ 32) will be randomized to either 24 mg encapsulated XN per day or placebo and followed for 8 weeks. Throughout the trial, participants will be queried for adverse events. Biomarkers of clinical safety, blood and stool markers of inflammation, platelet function, Crohn's Disease Activity Index score, stool microbial composition, and XN metabolite profiles in blood, urine, and stool will be assessed every 2 weeks. DISCUSSION: We describe the protocol for a phase II clinical trial that evaluates the safety and tolerability of XN in adults with active CD, as well as evaluate metabolism and mechanisms that are relevant to CD and other diseases with underlying inflammation and/or gut permeability. The effects of XN on inflammatory biomarkers, platelet function, the microbiota, and multi-omics biomarkers measured in this phase II trial of adults with CD will be compared to the effects of XN in healthy adults in our previous phase I trial. The results of the study will advance the evidence guiding the use of XN in patients with CD. TRIAL REGISTRATION: ClinialTrials.gov NCT04590508. Registered on October 19, 2020.


Asunto(s)
Productos Biológicos , Enfermedad de Crohn , Microbiota , Adulto , Humanos , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/tratamiento farmacológico , Flavonoides/efectos adversos , Biomarcadores , Inflamación , Productos Biológicos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase II como Asunto
11.
Front Pharmacol ; 13: 954980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278228

RESUMEN

Consumption of a high fat diet (HFD) is linked to metabolic syndrome and cognitive impairments. This is exacerbated in age-related cognitive decline (ACD) and in individuals with a genetic risk for Alzheimer's disease (AD). Apolipoprotein E (apoE) is involved in cholesterol metabolism. In humans, there are three major isoforms, E2, E3, and E4. Compared to E3, E4 increases ACD and AD risk and vulnerability to the deleterious cognitive effects of a HFD. The plant compound Xanthohumol (XN) had beneficial effects on cognition and metabolism in C57BL/6J wild-type (WT) male mice put on a HFD at 9 weeks of age for 13 weeks. As the effects of XN in the context of a HFD in older WT, E3, and E4 female and male mice are not known, in the current study male and female WT, E3, and E4 mice were fed a HFD alone or a HFD containing 0.07% XN for 10 or 19 weeks, starting at 6 months of age, prior to the beginning of behavioral and cognitive testing. XN showed sex- and ApoE isoform-dependent effects on cognitive performance. XN-treated E4 and WT, but not E3, mice had higher glucose transporter protein levels in the hippocampus and cortex than HFD-treated mice. E3 and E4 mice had higher glucose transporter protein levels in the hippocampus and lower glucose transporter protein levels in the cortex than WT mice. In the standard experiment, regardless of XN treatment, E4 mice had nearly double as high ceramide and sphingomyelin levels than E3 mice and male mice had higher level of glycosylated ceramide than female mice. When the differential effects of HFD in E3 and E4 males were assessed, the arginine and proline metabolism pathway was affected. In the extended exposure experiment, in E3 males XN treatment affected the arginine and proline metabolism and the glycine, serine, and threonine metabolism. Myristic acid levels were decreased in XN-treated E3 males but not E3 females. These data support the therapeutic potential for XN to ameliorate HFD-induced cognitive impairments and highlight the importance of considering sex and ApoE isoform in determining who might most benefit from this dietary supplement.

12.
Nutrients ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235577

RESUMEN

Withania somnifera (WS) extracts have been used in traditional medicine for millennia to promote healthy aging and wellbeing. WS is now also widely used in Western countries as a nutritional supplement to extend healthspan and increase resilience against age-related changes, including sleep deficits and depression. Although human trials have supported beneficial effects of WS, the study designs have varied widely. Plant material is intrinsically complex, and extracts vary widely with the origin of the plant material and the extraction method. Commercial supplements can contain various other ingredients, and the characteristics of the study population can also be varied. To perform maximally controlled experiments, we used plant extracts analyzed for their composition and stability. We then tested these extracts in an inbred Drosophila line to minimize effects of the genetic background in a controlled environment. We found that a water extract of WS (WSAq) was most potent in improving physical fitness, while an ethanol extract (WSE) improved sleep in aged flies. Both extracts provided resilience against stress-induced behavioral changes. WSE contained higher levels of withanolides, which have been proposed to be active ingredients, than WSAq. Therefore, withanolides may mediate the sleep improvement, whereas so-far-unknown ingredients enriched in WSAq likely mediate the effects on fitness and stress-related behavior.


Asunto(s)
Withania , Witanólidos , Anciano , Animales , Drosophila melanogaster , Etanol , Humanos , Fenotipo , Extractos Vegetales/farmacología , Agua , Witanólidos/farmacología
13.
Front Mol Biosci ; 9: 903130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928228

RESUMEN

Scope: Nitrate supplementation is a popular ergogenic aid that improves exercise performance by reducing oxygen consumption during exercise. We investigated the effect of nitrate exposure and exercise on metabolic pathways in zebrafish liver. Materials and methods: Fish were exposed to sodium nitrate (606.9 mg/L), or control water, for 21 days and analyzed at intervals during an exercise test. We utilized untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and measured gene expression of 24 genes central to energy metabolism and redox signaling. Results: We observed a greater abundance of metabolites involved in endogenous nitric oxide (NO) metabolism and amino acid metabolism in nitrate-treated liver at rest, compared to rested controls. In the absence of exercise, nitrate treatment upregulated expression of genes central to nutrient sensing (pgc1a), protein synthesis (mtor) and purine metabolism (pnp5a and ampd1) and downregulated expression of genes involved in mitochondrial fat oxidation (acaca and cpt2). Conclusion: Our data support a role for sub-chronic nitrate treatment in the improvement of exercise performance, in part, by improving NO bioavailability, sparing arginine, and modulating hepatic gluconeogenesis and glycolytic capacity in the liver.

14.
Nat Prod Commun ; 17(7)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35875707

RESUMEN

Phytochemicals from the genus, Fagonia, have been attracting increasing attention due to their potential beneficial effects on human health. Fagonia species contain various types of phytochemicals such as flavonoids, alkaloids, saponins, terpenoids, coumarins and tannins. In this study, we investigated the phytochemical composition of unhydrolyzed and acid-hydrolyzed extracts of Fagonia indica and their bioactivity toward breast cancer MCF-7 cells in vitro. The results revealed that F. indica contains phytochemicals consistent with the reported phytochemical composition of this Fagonia species, with greater amounts of aglycones detected in the hydrolyzed extract. The crude extract of F. indica without acid hydrolysis was found to be ineffective in inhibiting the growth of MCF-7 cells at doses below 1000 µg/mL. However, after acid hydrolysis (to mimic gastro-intestinal hydrolysis), the F. indica extract became growth-inhibitory to MCF-7 cells as low as 10 µg/mL and the cytotoxicity increased with increasing dose and time of treatment. The results suggest that F. indica extracts contain phytochemicals in glycosidic forms whose aglycones are active as anti-proliferative agents toward breast cancer cells in vitro.

15.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883889

RESUMEN

The slow pace of discovery of bioactive natural products can be attributed to the difficulty in rapidly identifying them in complex mixtures such as plant extracts. To overcome these hurdles, we explored the utility of two machine learning techniques, i.e., Elastic Net and Random Forests, for identifying the individual anti-inflammatory principle(s) of an extract of the inflorescences of the hops (Humulus lupulus) containing hundreds of natural products. We fractionated a hop extract by column chromatography to obtain 40 impure fractions, determined their anti-inflammatory activity using a macrophage-based bioassay that measures inhibition of iNOS-mediated formation of nitric oxide, and characterized the chemical composition of the fractions by flow-injection HRAM mass spectrometry and LC-MS/MS. Among the top 10 predictors of bioactivity were prenylated flavonoids and humulones. The top Random Forests predictor of bioactivity, xanthohumol, was tested in pure form in the same bioassay to validate the predicted result (IC50 7 µM). Other predictors of bioactivity were identified by spectral similarity with known hop natural products using the Global Natural Products Social Networking (GNPS) algorithm. Our machine learning approach demonstrated that individual bioactive natural products can be identified without the need for extensive and repetitive bioassay-guided fractionation of a plant extract.

16.
Antioxidants (Basel) ; 11(2)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35204098

RESUMEN

Centella asiatica is reputed in Eastern medicine to improve cognitive function in humans. Preclinical studies have demonstrated that aqueous extracts of C. asiatica improve cognition in mouse models of aging and Alzheimer's disease (AD) through the modulation of mitochondrial biogenesis and nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response genes. This randomized, double-blind, crossover Phase I trial explored the oral bioavailability and pharmacokinetics of key compounds from two doses (2 g and 4 g) of a standardized C. asiatica aqueous extract product (CAP), over 10 h, in four mildly demented older adults on cholinesterase inhibitor therapy. The analysis focused on triterpenes (TTs) and caffeoylquinic acids (CQAs), which are known to contribute to C. asiatica's neurological activity. The acute safety of CAP and the effects on NRF2 gene expression in peripheral blood mononuclear cells were evaluated. Single administration of 2 g or 4 g of CAP was safe and well-tolerated. The TT aglycones, asiatic acid and madecassic acid, were identified in plasma and urine, while the parent glycosides, asiaticoside and madecassoside, although abundant in CAP, were absent in plasma and had limited renal excretion. Similarly, mono- and di-CQAs showed delayed absorption and limited presence in plasma or urine, while the putative metabolites of these compounds showed detectable plasma pharmacokinetic profiles and urinary excretion. CAP elicited a temporal change in NRF2 gene expression, mirroring the TT aglycone's pharmacokinetic curve in a paradoxical dose-dependent manner. The oral bioavailability of active compounds or their metabolites, NRF2 target engagement, and the acute safety and tolerability of CAP support the validity of using CAP in future clinical studies.

17.
Antioxidants (Basel) ; 11(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35052625

RESUMEN

Due to an increase in the aging population, age-related diseases and age-related changes, such as diminished cognition and sleep disturbances, are an increasing health threat. It has been suggested that an increase in oxidative stress underlies many of these changes. Current treatments for these diseases and changes either have low efficacy or have deleterious side effects preventing long-time use. Therefore, alternative treatments that promote healthy aging and provide resilience against these health threats are needed. The herbs Withania somnifera and Centella asiatica may be two such alternatives because both have been connected with reducing oxidative stress and could therefore ameliorate age-related impairments. To test the effects of these herbs on behavioral phenotypes induced by oxidative stress, we used the Drosophila melanogaster sniffer mutant which has high levels of oxidative stress due to reduced carbonyl reductase activity. Effects on cognition and mobility were assessed using phototaxis assays and both, W. somnifera and C. asiatica water extracts improved phototaxis in sniffer mutants. In addition, W. somnifera improved nighttime sleep in male and female sniffer flies and promoted a less fragmented sleep pattern in male sniffer flies. This suggests that W. somnifera and C. asiatica can ameliorate oxidative stress-related changes in behavior and that by doing so they might promote healthy aging in humans.

18.
J Alzheimers Dis ; 85(4): 1601-1619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34958022

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) peptide in the brain. OBJECTIVE: To gain a better insight into alterations in major biochemical pathways underlying AD. METHODS: We compared metabolomic profiles of hippocampal tissue of 20-month-old female Tg2576 mice expressing the familial AD-associated hAPP695SW transgene with their 20-month-old wild type female littermates. RESULTS: The hAPP695SW transgene causes overproduction and accumulation of Aß in the brain. Out of 180 annotated metabolites, 54 metabolites differed (30 higher and 24 lower in Tg2576 versus wild-type hippocampal tissue) and were linked to the amino acid, nucleic acid, glycerophospholipid, ceramide, and fatty acid metabolism. Our results point to 1) heightened metabolic activity as indicated by higher levels of urea, enhanced fatty acid ß-oxidation, and lower fatty acid levels; 2) enhanced redox regulation; and 3) an imbalance of neuro-excitatory and neuro-inhibitory metabolites in hippocampal tissue of aged hAPP695SW transgenic mice. CONCLUSION: Taken together, our results suggest that dysregulation of multiple metabolic pathways associated with a concomitant shift to an excitatory-inhibitory imbalance are contributing mechanisms of AD-related pathology in the Tg2576 mouse.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Metabolómica , Transducción de Señal , Transgenes/genética , Anciano , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos
19.
Mol Nutr Food Res ; 66(1): e2100670, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34806294

RESUMEN

Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Antioxidantes/farmacología , Alimentos Funcionales , Polifenoles/metabolismo , Polifenoles/farmacología
20.
Nutrients ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36615700

RESUMEN

Brassica vegetables contain a multitude of bioactive compounds that prevent and suppress cancer and promote health. Evidence suggests that the gut microbiome may be essential in the production of these compounds; however, the relationship between specific microbes and the abundance of metabolites produced during cruciferous vegetable digestion are still unclear. We utilized an ex vivo human fecal incubation model with in vitro digested broccoli sprouts (Broc), Brussels sprouts (Brus), a combination of the two vegetables (Combo), or a negative control (NC) to investigate microbial metabolites of cruciferous vegetables. We conducted untargeted metabolomics on the fecal cultures by LC-MS/MS and completed 16S rRNA gene sequencing. We identified 72 microbial genera in our samples, 29 of which were significantly differentially abundant between treatment groups. A total of 4499 metabolomic features were found to be significantly different between treatment groups (q ≤ 0.05, fold change > 2). Chemical enrichment analysis revealed 45 classes of compounds to be significantly enriched by brassicas, including long-chain fatty acids, coumaric acids, and peptides. Multi-block PLS-DA and a filtering method were used to identify microbe−metabolite interactions. We identified 373 metabolites from brassica, which had strong relationships with microbes, such as members of the family Clostridiaceae and genus Intestinibacter, that may be microbially derived.


Asunto(s)
Brassica , Microbioma Gastrointestinal , Humanos , Verduras , Microbioma Gastrointestinal/genética , Cromatografía Liquida , ARN Ribosómico 16S/genética , Promoción de la Salud , Multiómica , Espectrometría de Masas en Tándem , Brassica/química , Metabolómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA