Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Toxicol Sci ; 198(2): 191-209, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38243716

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are used in various household and industrial products. In humans, positive associations were reported between PFAS, including perfluorsulfonic acid and perfluorooctanoic acid, and cholesterol, a cardiometabolic risk factor. Animal studies show the opposite. Human-centered approaches are needed to better understand the effects of PFAS mixtures on cholesterol. Here, a systems toxicology approach is described, using a gene-centered cholesterol biokinetic model. PFAS exposure-gene expression relations from published data were introduced into the model. An existing PFAS physiologically based kinetic model was augmented with lung and dermal compartments and integrated with the cholesterol model to enable exposure-effect modeling. The final model was populated with data reflecting lifetime mixture exposure from: tolerable weekly intake values; the environment; high occupational exposures (ski waxing, PFAS industry). Results indicate that low level exposures (tolerable weekly intake, environmental) did not change cholesterol. In contrast, occupational exposures clearly resulted in internal PFAS exposure and disruption of cholesterol homeostasis, largely in line with epidemiological observations. Despite model limitations (eg, dynamic range, directionality), changes in cholesterol homeostasis were predicted for ski waxers, hitherto unknown from epidemiological studies. Here, future studies involving lipid metabolism could improve risk assessment.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Exposición Profesional , Animales , Humanos , Metabolismo de los Lípidos , Fluorocarburos/toxicidad , Cinética , Homeostasis , Ácidos Alcanesulfónicos/toxicidad , Contaminantes Ambientales/toxicidad
2.
Environ Res ; 238(Pt 1): 117001, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683788

RESUMEN

During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.


Asunto(s)
Exposoma , Humanos , Exposición a Riesgos Ambientales
3.
Environ Res ; 217: 114650, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36309218

RESUMEN

While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.


Asunto(s)
Rutas de Resultados Adversos , Humanos , Medición de Riesgo/métodos
4.
Environ Epidemiol ; 6(2): e185, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35434456

RESUMEN

Exposures at work have a major impact on noncommunicable diseases (NCDs). Current risk reduction policies and strategies are informed by existing scientific evidence, which is limited due to the challenges of studying the complex relationship between exposure at work and outside work and health. We define the working life exposome as all occupational and related nonoccupational exposures. The latter includes nonoccupational exposures that may be directly or indirectly influenced by or interact with the working life of the individual in their relation to health. The Exposome Project for Health and Occupational Research aims to advance knowledge on the complex working life exposures in relation to disease beyond the single high exposure-single health outcome paradigm, mapping and relating interrelated exposures to inherent biological pathways, key body functions, and health. This will be achieved by combining (1) large-scale harmonization and pooling of existing European cohorts systematically looking at multiple exposures and diseases, with (2) the collection of new high-resolution external and internal exposure data. Methods and tools to characterize the working life exposome will be developed and applied, including sensors, wearables, a harmonized job exposure matrix (EuroJEM), noninvasive biomonitoring, omics, data mining, and (bio)statistics. The toolbox of developed methods and knowledge will be made available to policy makers, occupational health practitioners, and scientists. Advanced knowledge on working life exposures in relation to NCDs will serve as a basis for evidence-based and cost-effective preventive policies and actions. The toolbox will also enable future scientists to further expand the working life exposome knowledge base.

5.
Environ Health Perspect ; 130(3): 37002, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35238605

RESUMEN

BACKGROUND: Mechanistic data is increasingly used in hazard identification of chemicals. However, the volume of data is large, challenging the efficient identification and clustering of relevant data. OBJECTIVES: We investigated whether evidence identification for hazard assessment can become more efficient and informed through an automated approach that combines machine reading of publications with network visualization tools. METHODS: We chose 13 chemicals that were evaluated by the International Agency for Research on Cancer (IARC) Monographs program incorporating the key characteristics of carcinogens (KCCs) approach. Using established literature search terms for KCCs, we retrieved and analyzed literature using Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA combines large-scale literature processing with pathway databases and extracts relationships between biomolecules, bioprocesses, and chemicals into statements (e.g., "benzene activates DNA damage"). These statements were subsequently assembled into networks and compared with the KCC evaluation by the IARC, to evaluate the informativeness of our approach. RESULTS: We found, in general, larger networks for those chemicals which the IARC has evaluated the evidence to be strong for KCC induction. Larger networks were not directly linked to publication count, given that we retrieved small networks for several chemicals with little support for KCC activation according to the IARC, despite the significant volume of literature for these specific chemicals. In addition, interpreting networks for genotoxicity and DNA repair showed concordance with the IARC KCC evaluation. DISCUSSION: Our method is an automated approach to condense mechanistic literature into searchable and interpretable networks based on an a priori ontology. The approach is no replacement of expert evaluation but, instead, provides an informed structure for experts to quickly identify which statements are made in which papers and how these could connect. We focused on the KCCs because these are supported by well-described search terms. The method needs to be tested in other frameworks as well to demonstrate its generalizability. https://doi.org/10.1289/EHP9112.


Asunto(s)
Carcinógenos , Neoplasias , Benceno , Carcinógenos/toxicidad , Bases de Datos Factuales , Humanos , Neoplasias/inducido químicamente , Neoplasias/epidemiología , Medición de Riesgo
7.
Cancer Epidemiol Biomarkers Prev ; 31(4): 751-757, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906966

RESUMEN

BACKGROUND: Chemical risk assessment can benefit from integrating data across multiple evidence bases, especially in exposure-response curve (ERC) modeling when data across the exposure range are sparse. METHODS: We estimated the ERC for benzene and acute myeloid leukemia (AML), by fitting linear and spline-based Bayesian meta-regression models that included summary risk estimates from non-AML and nonhuman studies as prior information. Our complete dataset included six human AML studies, three human leukemia studies, 10 human biomarker studies, and four experimental animal studies. RESULTS: A linear meta-regression model with intercept best predicted AML risks after cross-validation, both for the full dataset and AML studies only. Risk estimates in the low exposure range [<40 parts per million (ppm)-years] from this model were comparable, but more precise when the ERC was derived using all available data than when using AML data only. Allowing for between-study heterogeneity, RRs and 95% prediction intervals (95% PI) at 5 ppm-years were 1.58 (95% PI, 1.01-3.22) and 1.44 (95% PI, 0.85-3.42), respectively. CONCLUSIONS: Integrating the available epidemiologic, biomarker, and animal data resulted in more precise risk estimates for benzene exposure and AML, although the large between-study heterogeneity hampers interpretation of these results. The harmonization steps required to fit the Bayesian meta-regression model involve a range of assumptions that need to be critically evaluated, as they seem crucial for successful implementation. IMPACT: By describing a framework for data integration and explicitly describing the necessary data harmonization steps, we hope to enable risk assessors to better understand the advantages and assumptions underlying a data integration approach.See related commentary by Keil, p. 695.


Asunto(s)
Leucemia Mieloide Aguda , Exposición Profesional , Animales , Teorema de Bayes , Benceno/toxicidad , Biomarcadores , Humanos , Leucemia Mieloide Aguda/inducido químicamente , Leucemia Mieloide Aguda/epidemiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-34948743

RESUMEN

The Vasilikos Energy Center (VEC) is a large hydrocarbon industrial hub actively operating in Cyprus. There is strong public interest by the communities surrounding VEC to engage with all stakeholders towards the sustainable development of hydrocarbon in the region. The methodological framework of the exposome concept would allow for the holistic identification of all relevant environmental exposures by engaging the most relevant stakeholders in industrially contaminated sites. The main objectives of this study were to: (i) evaluate the stakeholders' perceptions of the environmental and public health risks and recommended actions associated with the VEC hydrocarbon activities, and (ii) assess the stakeholders' understanding and interest towards exposome-based technologies for use in oil and gas applications. Methods: Six major groups of stakeholders were identified: local authorities, small-medium industries (SMIs) (including multi-national companies), small-medium enterprises (SMEs), academia/professional associations, government, and the general public residing in the communities surrounding the VEC. During 2019-2021, a suite of stakeholder engagement initiatives was deployed, including semi-structured interviews (n = 32), a community survey for the general public (n = 309), technical meetings, and workshops (n = 4). Results from the semi-structured interviews, technical meetings and workshops were analyzed through thematic analysis and results from the community survey were analyzed using descriptive statistics. Results: Almost all stakeholders expressed the need for the implementation of a systematic health monitoring system for the VEC broader area and its surrounding residential communities, including frequent measurements of air pollutant emissions. Moreover, stricter policies by the government about licensing and monitoring of hydrocarbon activities and proper communication to the public and the mass media emerged as important needs. The exposome concept was not practiced by the SMEs, but SMIs showed willingness to use it in the future as part of their research and development activities. Conclusions: The sustainable development of hydrocarbon exploitation and processing prospects for Cyprus involves the VEC. Continuous and active collaboration and mutual feedback among all stakeholders involved with the VEC is essential, as this may allow future environmental and occupational health initiatives to be formalized.


Asunto(s)
Salud Pública , Participación de los Interesados , Chipre , Exposición a Riesgos Ambientales , Hidrocarburos
9.
Ann Work Expo Health ; 65(9): 1011-1028, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34219141

RESUMEN

INTRODUCTION: Oil and gas workers have been shown to be at increased risk of chronic diseases including cancer, asthma, chronic obstructive pulmonary disease, and hearing loss, among others. Technological advances may be used to assess the external (e.g. personal sensors, smartphone apps and online platforms, exposure models) and internal exposome (e.g. physiologically based kinetic modeling (PBK), biomonitoring, omics), offering numerous possibilities for chronic disease prevention strategies and risk management measures. The objective of this study was to review the literature on these technologies, by focusing on: (i) evaluating their applicability for exposome research in the oil and gas industry, and (ii) identifying key challenges that may hamper the successful application of such technologies in the oil and gas industry. METHOD: A scoping review was conducted by identifying peer-reviewed literature with searches in MEDLINE/PubMed and SciVerse Scopus. Two assessors trained on the search strategy screened retrieved articles on title and abstract. The inclusion criteria used for this review were: application of the aforementioned technologies at a workplace in the oil and gas industry or, application of these technologies for an exposure relevant to the oil and gas industry but in another occupational sector, English language and publication period 2005-end of 2019. RESULTS: In total, 72 articles were included in this scoping review with most articles focused on omics and bioinformatics (N = 22), followed by biomonitoring and biomarkers (N = 20), external exposure modeling (N = 11), PBK modeling (N = 10), and personal sensors (N = 9). Several studies were identified in the oil and gas industry on the application of PBK models and biomarkers, mainly focusing on workers exposed to benzene. The application of personal sensors, new types of exposure models, and omics technology are still in their infancy with respect to the oil and gas industry. Nevertheless, applications of these technologies in other occupational sectors showed the potential for application in this sector. DISCUSSION AND CONCLUSION: New exposome technologies offer great promise for personal monitoring of workers in the oil and gas industry, but more applied research is needed in collaboration with the industry. Current challenges hindering a successful application of such technologies include (i) the technological readiness of sensors, (ii) the availability of data, (iii) the absence of standardized and validated methods, and (iv) the need for new study designs to study the development of disease during working life.


Asunto(s)
Exposoma , Exposición Profesional , Humanos , Industria del Petróleo y Gas , Medición de Riesgo , Tecnología
10.
Environ Int ; 146: 106246, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181410

RESUMEN

The COVID-19 pandemic placed public health measures against infectious diseases at the core of global health challenges, especially in cities where more than half of the global population lives. SARS-CoV-2 is an exposure agent recently added to the network of exposures that comprise the human exposome, i.e. the totality of all environmental exposures throughout one's lifetime. At the same time, the application of measures to tackle SARS-CoV-2 transmission leads to changes in the exposome components and in characteristics of urban environments that define the urban exposome, a complementary concept to the human exposome, which focuses on monitoring urban health. This work highlights the use of a comprehensive systems-based approach of the exposome for better capturing the population-wide and individual-level variability in SARS-CoV-2 spread and its associated urban and individual exposures towards improved guidance and response. Population characteristics, the built environment and spatiotemporal features of city infrastructure, as well as individual characteristics/parameters, socioeconomic status, occupation and biological susceptibility need to be simultaneously considered when deploying non-pharmacological public health measures. Integrating individual and population characteristics, as well as urban-specific parameters is the prerequisite in urban exposome studies. Applications of the exposome approach in cities/towns could facilitate assessment of health disparities and better identification of vulnerable populations, as framed by multiple environmental, urban design and planning co-exposures. Exposome-based applications in epidemics control and response include the implementation of exposomic tools that have been quite mature in non-communicable disease research, ranging from biomonitoring and surveillance to sensors and modeling. Therefore, the exposome can be a novel tool in risk assessment and management during epidemics and other major public health events. This is a unique opportunity for the research community to exploit the exposome concept and its tools in upgrading and further developing site-specific public health measures in cities.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Ciudades , Exposición a Riesgos Ambientales/análisis , Exposoma , Humanos , Pandemias , Salud Pública , SARS-CoV-2 , Salud Urbana
11.
F1000Res ; 102021.
Artículo en Inglés | MEDLINE | ID: mdl-37842337

RESUMEN

Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Europa (Continente) , Medición de Riesgo
12.
Environ Health Perspect ; 128(8): 87004, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32783535

RESUMEN

BACKGROUND: The genotoxicity of benzene has been investigated in dozens of biomonitoring studies, mainly by studying (classical) chromosomal aberrations (CAs) or micronuclei (MN) as markers of DNA damage. Both have been shown to be predictive of future cancer risk in cohort studies and could, therefore, potentially be used for risk assessment of genotoxicity-mediated cancers. OBJECTIVES: We sought to estimate an exposure-response curve (ERC) and quantify between-study heterogeneity using all available quantitative evidence on the cytogenetic effects of benzene exposure on CAs and MN respectively. METHODS: We carried out a systematic literature review and summarized all available data of sufficient quality using meta-analyses. We assessed the heterogeneity in slope estimates between studies and conducted additional sensitivity analyses to assess how various study characteristics impacted the estimated ERC. RESULTS: Sixteen CA (1,356 individuals) and 13 MN studies (2,097 individuals) were found to be eligible for inclusion in a meta-analysis. Studies where benzene was the primary genotoxic exposure and that had adequate assessment of both exposure and outcomes were used for the primary analysis. Estimated slope estimates were an increase of 0.27% CA [(95% CI: 0.08%, 0.47%); based on the results from 4 studies] and 0.27% MN [(95% CI: -0.23%, 0.76%); based on the results from 7 studies] per parts-per-million benzene exposure. We observed considerable between-study heterogeneity for both end points (I2>90%). DISCUSSION: Our study provides a systematic, transparent, and quantitative summary of the literature describing the strong association between benzene exposure and accepted markers of genotoxicity in humans. The derived consensus slope can be used as a best estimate of the quantitative relationship between real-life benzene exposure and genetic damage in future risk assessment. We also quantitate the large between-study heterogeneity that exists in this literature, a factor which is crucial for the interpretation of single-study or consensus slopes. https://doi.org/10.1289/EHP6404.


Asunto(s)
Benceno , Exposición Profesional/estadística & datos numéricos , Biomarcadores , Análisis Citogenético , Daño del ADN , Humanos
13.
Small ; 16(6): e1904749, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31913582

RESUMEN

Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.


Asunto(s)
Ciencia de los Materiales , Nanoestructuras , Seguridad , Pruebas de Toxicidad , Simulación por Computador , Humanos , Ciencia de los Materiales/métodos , Ciencia de los Materiales/tendencias , Nanoestructuras/normas , Medición de Riesgo
14.
Environ Res ; 164: 597-624, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626821

RESUMEN

BACKGROUND: The European Union's 7th Framework Programme (EU's FP7) project HEALS - Health and Environment-wide Associations based on Large Population Surveys - aims a refinement of the methodology to elucidate the human exposome. Human biomonitoring (HBM) provides a valuable tool for understanding the magnitude of human exposure from all pathways and sources. However, availability of specific biomarkers of exposure (BoE) is limited. OBJECTIVES: The objective was to summarize the availability of BoEs for a broad range of environmental stressors and exposure determinants and corresponding reference and exposure limit values and biomonitoring equivalents useful for unraveling the exposome using the framework of environment-wide association studies (EWAS). METHODS: In a face-to-face group discussion, scope, content, and structure of the HEALS deliverable "Guidelines for appropriate BoE selection for EWAS studies" were determined. An expert-driven, distributed, narrative review process involving around 30 individuals of the HEALS consortium made it possible to include extensive information targeted towards the specific characteristics of various environmental stressors and exposure determinants. From the resulting 265 page report, targeted information about BoE, corresponding reference values (e.g., 95th percentile or measures of central tendency), exposure limit values (e.g., the German HBM I and II values) and biomonitoring equivalents (BEs) were summarized and updated. RESULTS: 64 individual biological, chemical, physical, psychological and social environmental stressors or exposure determinants were included to fulfil the requirements of EWAS. The list of available BoEs is extensive with a number of 135; however, 12 of the stressors and exposure determinants considered do not leave any measurable specific substance in accessible body specimens. Opportunities to estimate the internal exposure stressors not (yet) detectable in human specimens were discussed. CONCLUSIONS: Data about internal exposures are useful to decode the exposome. The paper provides extensive information for EWAS. Information included serves as a guideline - snapshot in time without any claim to comprehensiveness - to interpret HBM data and offers opportunities to collect information about the internal exposure of stressors if no specific BoE is available.


Asunto(s)
Biomarcadores , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Unión Europea , Humanos , Valores de Referencia
15.
Arch Toxicol ; 88(12): 2261-87, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25399406

RESUMEN

A long-term goal of numerous research projects is to identify biomarkers for in vitro systems predicting toxicity in vivo. Often, transcriptomics data are used to identify candidates for further evaluation. However, a systematic directory summarizing key features of chemically influenced genes in human hepatocytes is not yet available. To bridge this gap, we used the Open TG-GATES database with Affymetrix files of cultivated human hepatocytes incubated with chemicals, further sets of gene array data with hepatocytes from human donors generated in this study, and publicly available genome-wide datasets of human liver tissue from patients with non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular cancer (HCC). After a curation procedure, expression data of 143 chemicals were included into a comprehensive biostatistical analysis. The results are summarized in the publicly available toxicotranscriptomics directory ( http://wiki.toxbank.net/toxicogenomics-map/ ) which provides information for all genes whether they are up- or downregulated by chemicals and, if yes, by which compounds. The directory also informs about the following key features of chemically influenced genes: (1) Stereotypical stress response. When chemicals induce strong expression alterations, this usually includes a complex but highly reproducible pattern named 'stereotypical response.' On the other hand, more specific expression responses exist that are induced only by individual compounds or small numbers of compounds. The directory differentiates if the gene is part of the stereotypical stress response or if it represents a more specific reaction. (2) Liver disease-associated genes. Approximately 20 % of the genes influenced by chemicals are up- or downregulated, also in liver disease. Liver disease genes deregulated in cirrhosis, HCC, and NASH that overlap with genes of the aforementioned stereotypical chemical stress response include CYP3A7, normally expressed in fetal liver; the phase II metabolizing enzyme SULT1C2; ALDH8A1, known to generate the ligand of RXR, one of the master regulators of gene expression in the liver; and several genes involved in normal liver functions: CPS1, PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and ADH4. (3) Unstable baseline genes. The process of isolating and the cultivation of hepatocytes was sufficient to induce some stress leading to alterations in the expression of genes, the so-called unstable baseline genes. (4) Biological function. Although more than 2,000 genes are transcriptionally influenced by chemicals, they can be assigned to a relatively small group of biological functions, including energy and lipid metabolism, inflammation and immune response, protein modification, endogenous and xenobiotic metabolism, cytoskeletal organization, stress response, and DNA repair. In conclusion, the introduced toxicotranscriptomics directory offers a basis for a rationale choice of candidate genes for biomarker evaluation studies and represents an easy to use source of background information on chemically influenced genes.


Asunto(s)
Bases de Datos Genéticas , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatopatías/genética , Bibliotecas de Moléculas Pequeñas/toxicidad , Toxicogenética/métodos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Análisis de Componente Principal , Bibliotecas de Moléculas Pequeñas/química , Toxicogenética/estadística & datos numéricos
16.
Crit Rev Toxicol ; 44(7): 590-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25000333

RESUMEN

Allergic contact dermatitis (ACD) is a hypersensitivity immune response induced by small protein-reactive chemicals. Currently, the murine local lymph node assay (LLNA) provides hazard identification and quantitative estimation of sensitizing potency. Given the complexity of ACD, a single alternative method cannot replace the LLNA, but it is necessary to combine methods through an integrated testing strategy (ITS). In the development of an ITS, information regarding mechanisms and molecular processes involved in skin sensitization is crucial. The recently published adverse outcome pathway (AOP) for skin sensitization captures mechanistic knowledge into key events that lead to ACD. To understand the molecular processes in ACD, a systematic review of murine in vivo studies was performed and an ACD molecular map was constructed. In addition, comparing the molecular map to the limited human in vivo toxicogenomic data available suggests that certain processes are similarly triggered in mice and humans, but additional human data will be needed to confirm these findings and identify differences. To gain insight in the molecular mechanisms represented by various human in vitro systems, the map was compared to in vitro toxicogenomic data. This analysis allows for comparison of emerging in vitro methods on a molecular basis, in addition to mathematical predictive value. Finally, a survey of the current in silico, in chemico, and in vitro methods was used to indicate which AOP key event is modeled by each method. By anchoring emerging classification methods to the AOP and the ACD molecular map, complementing methods can be identified, which provides a cornerstone for the development of a testing strategy that accurately reflects the key events in skin sensitization.


Asunto(s)
Dermatitis Alérgica por Contacto/etiología , Animales , Movimiento Celular , Células Dendríticas/inmunología , Células Dendríticas/fisiología , Humanos , Activación de Linfocitos , Ratones , Factor 2 Relacionado con NF-E2/fisiología , Receptores Toll-Like/fisiología , Toxicogenética
17.
ALTEX ; 31(1): 53-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24127042

RESUMEN

Despite wide-spread consensus on the need to transform toxicology and risk assessment in order to keep pace with technological and computational changes that have revolutionized the life sciences, there remains much work to be done to achieve the vision of toxicology based on a mechanistic foundation. To this end, a workshop was organized to explore one key aspect of this transformation - the development of Pathways of Toxicity as a key tool for hazard identification based on systems biology. Several issues were discussed in depth in the workshop: The first was the challenge of formally defining the concept of a Pathway of Toxicity (PoT), as distinct from, but complementary to, other toxicological pathway concepts such as mode of action (MoA). The workshop came up with a preliminary definition of PoT as "A molecular definition of cellular processes shown to mediate adverse outcomes of toxicants". It is further recognized that normal physiological pathways exist that maintain homeostasis and these, sufficiently perturbed, can become PoT. Second, the workshop sought to define the adequate public and commercial resources for PoT information, including data, visualization, analyses, tools, and use-cases, as well as the kinds of efforts that will be necessary to enable the creation of such a resource. Third, the workshop explored ways in which systems biology approaches could inform pathway annotation, and which resources are needed and available that can provide relevant PoT information to the diverse user communities.


Asunto(s)
Alternativas a las Pruebas en Animales , Sustancias Peligrosas/toxicidad , Transducción de Señal/efectos de los fármacos , Pruebas de Toxicidad/métodos , Animales , Bases de Datos Factuales , Sustancias Peligrosas/metabolismo , Humanos , Valor Predictivo de las Pruebas , Medición de Riesgo , Transducción de Señal/fisiología
18.
Toxicol Sci ; 133(1): 112-24, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23457123

RESUMEN

Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [(18)F]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [(18)F]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase-associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests.


Asunto(s)
Encéfalo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Exposición Materna/efectos adversos , Compuestos de Metilmercurio/toxicidad , Neurogénesis/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Femenino , Fluorodesoxiglucosa F18 , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Edad Gestacional , Lactancia , Masculino , Tomografía de Emisión de Positrones , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Wistar , Transcriptoma/efectos de los fármacos
19.
BMC Med Genomics ; 6: 2, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23356878

RESUMEN

BACKGROUND: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. METHODS: We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. RESULTS: Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. CONCLUSIONS: Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.


Asunto(s)
Minería de Datos , Perfilación de la Expresión Génica , Toxicogenética , Animales , Colecalciferol/farmacología , Bases de Datos Factuales , Dioxinas/toxicidad , Análisis Discriminante , Células Epiteliales/efectos de los fármacos , Estradiol/farmacología , Humanos , Hígado/efectos de los fármacos , Ratones , Miocitos del Músculo Liso/efectos de los fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Análisis de Componente Principal , Timo/efectos de los fármacos , Triazoles/toxicidad , Sulfato de Zinc/toxicidad
20.
J Appl Toxicol ; 33(12): 1407-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22886929

RESUMEN

The use of genes for distinguishing classes of toxicity has become well established. In this paper we combine the reconstruction of a gene dysregulation network (GDN) with a classifier to assign unseen compounds to their appropriate class. Gene pairs in the GDN are dysregulated in the sense that they are linked by a common expression pattern in one class and differ in this pattern in another class. The classifier gives a quantitative measure on this difference by its prediction accuracy. As an in-depth example, gene pairs were selected that were dysregulated between skin cells treated with either sensitizers or irritants. Pairs with known and novel markers were found such as HMOX1 and ZFAND2A, ATF3 and PPP1R15A, OXSR1 and HSPA1B, ZFP36 and MAFF. The resulting GDN proved biologically valid as it was well-connected and enriched in known interactions, processes and common regulatory motifs for pairs. Classification accuracy was improved when compared with conventional classifiers. As the dysregulated patterns for heat shock responding genes proved to be distinct from those of other stress genes, we were able to formulate the hypothesis that heat shock genes play a specific role in sensitization, apart from other stress genes. In conclusion, our combined approach creates added value for classification-based toxicogenomics by obtaining novel, well-distinguishing and biologically interesting measures, suitable for the formulation of hypotheses on functional relationships between genes and their relevance for toxicity class differences.


Asunto(s)
Alérgenos/toxicidad , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Irritantes/toxicidad , Toxicogenética/métodos , Alérgenos/clasificación , Biomarcadores , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Irritantes/clasificación , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...