Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Magn Reson Med Sci ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897936

RESUMEN

MRI has progressed significantly with the introduction of advanced computational methods and novel imaging techniques, but their wider adoption hinges on their reproducibility. This concise review synthesizes reproducible research insights from recent MRI articles to examine the current state of reproducibility in neuroimaging, highlighting key trends and challenges. It also provides a custom generative pretrained transformer (GPT) model, designed specifically for aiding in an automated analysis and synthesis of information pertaining to the reproducibility insights associated with the articles at the core of this review.

2.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730562

RESUMEN

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Asunto(s)
Encéfalo , Colaboración de las Masas , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos , Masculino , Femenino , Adulto , Algoritmos
3.
Front Physiol ; 14: 1281147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028766

RESUMEN

Relaxometry is a field with a glorious and controversial history, and no review will ever do it justice. It is full of egos and inventions, patents and lawsuits, high expectations and deep disillusionments. Rather than a paragraph dedicated to each of these, we want to give it an impressionistic overview, painted over with a coat of personal opinions and ruminations about the future of the field. For those unfamiliar with the Gartner hype cycle, here's a brief recap. The cycle starts with a technology trigger and goes through a phase of unrealistically inflated expectations. Eventually the hype dies down as implementations fail to deliver on their promise, and disillusionment sets in. Technologies that manage to live through the trough reach the slope of enlightenment, when there is a flurry of second and third generation products that make the initial promise feel feasible again. Finally, we reach the slope of productivity, where mainstream adoption takes off, and more incremental progress is made, eventually reaching steady state in terms of the technology's visibility. The entire interactive timeline can be viewed at https://qmrlab.org/relaxometry/.

4.
PLoS Comput Biol ; 19(7): e1011230, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498959

RESUMEN

The Canadian Open Neuroscience Platform (CONP) takes a multifaceted approach to enabling open neuroscience, aiming to make research, data, and tools accessible to everyone, with the ultimate objective of accelerating discovery. Its core infrastructure is the CONP Portal, a repository with a decentralized design, where datasets and analysis tools across disparate platforms can be browsed, searched, accessed, and shared in accordance with FAIR principles. Another key piece of CONP infrastructure is NeuroLibre, a preprint server capable of creating and hosting executable and fully reproducible scientific publications that embed text, figures, and code. As part of its holistic approach, the CONP has also constructed frameworks and guidance for ethics and data governance, provided support and developed resources to help train the next generation of neuroscientists, and has fostered and grown an engaged community through outreach and communications. In this manuscript, we provide a high-level overview of this multipronged platform and its vision of lowering the barriers to the practice of open neuroscience and yielding the associated benefits for both individual researchers and the wider community.


Asunto(s)
Neurociencias , Canadá , Publicaciones , Comunicación
5.
Sci Data ; 9(1): 517, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002444

RESUMEN

The Brain Imaging Data Structure (BIDS) established community consensus on the organization of data and metadata for several neuroimaging modalities. Traditionally, BIDS had a strong focus on functional magnetic resonance imaging (MRI) datasets and lacked guidance on how to store multimodal structural MRI datasets. Here, we present and describe the BIDS Extension Proposal 001 (BEP001), which adds a range of quantitative MRI (qMRI) applications to the BIDS. In general, the aim of qMRI is to characterize brain microstructure by quantifying the physical MR parameters of the tissue via computational, biophysical models. By proposing this new standard, we envision standardization of qMRI through multicenter dissemination of interoperable datasets. This way, BIDS can act as a catalyst of convergence between qMRI methods development and application-driven neuroimaging studies that can help develop quantitative biomarkers for neural tissue characterization. In conclusion, this BIDS extension offers a common ground for developers to exchange novel imaging data and tools, reducing the entrance barrier for qMRI in the field of neuroimaging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Biomarcadores , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos
6.
Mult Scler ; 28(13): 2027-2037, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35903888

RESUMEN

BACKGROUND: The use of advanced magnetic resonance imaging (MRI) techniques in MS research has led to new insights in lesion evolution and disease outcomes. It has not yet been determined if, or how, pre-lesional abnormalities in normal-appearing white matter (NAWM) relate to the long-term evolution of new lesions. OBJECTIVE: To investigate the relationship between abnormalities in MRI measures of axonal and myelin volume fractions (AVF and MVF) in NAWM preceding development of black-hole (BH) and non-BH lesions in people with MS. METHODS: We obtained magnetization transfer and diffusion MRI at 6-month intervals in patients with MS to estimate MVF and AVF during lesion evolution. Lesions were classified as either BH or non-BH on the final imaging visit using T1 maps. RESULTS: Longitudinal data from 97 new T2 lesions from 9 participants were analyzed; 25 lesions in 8 participants were classified as BH 6-12 months after initial appearance. Pre-lesion MVF, AVF, and MVF/AVF were significantly lower, and T1 was significantly higher, in the lesions that later became BHs (p < 0.001) compared to those that did not. No significant pre-lesion abnormalities were found in non-BH lesions (p > 0.05). CONCLUSION: The present work demonstrated that pre-lesion abnormalities are associated with worse long-term lesion-level outcome.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Axones/patología , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
8.
Magn Reson Med ; 88(3): 1212-1228, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35657066

RESUMEN

PURPOSE: We developed an end-to-end workflow that starts with a vendor-neutral acquisition and tested the hypothesis that vendor-neutral sequences decrease inter-vendor variability of T1, magnetization transfer ratio (MTR), and magnetization transfer saturation-index (MTsat) measurements. METHODS: We developed and deployed a vendor-neutral 3D spoiled gradient-echo (SPGR) sequence on three clinical scanners by two MRI vendors. We then acquired T1 maps on the ISMRM-NIST system phantom, as well as T1, MTR, and MTsat maps in three healthy participants. We performed hierarchical shift function analysis in vivo to characterize the differences between scanners when the vendor-neutral sequence is used instead of commercial vendor implementations. Inter-vendor deviations were compared for statistical significance to test the hypothesis. RESULTS: In the phantom, the vendor-neutral sequence reduced inter-vendor differences from 8% to 19.4% to 0.2% to 5% with an overall accuracy improvement, reducing ground truth T1 deviations from 7% to 11% to 0.2% to 4%. In vivo, we found that the variability between vendors is significantly reduced (p = 0.015) for all maps (T1, MTR, and MTsat) using the vendor-neutral sequence. CONCLUSION: We conclude that vendor-neutral workflows are feasible and compatible with clinical MRI scanners. The significant reduction of inter-vendor variability using vendor-neutral sequences has important implications for qMRI research and for the reliability of multicenter clinical trials.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Voluntarios Sanos , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Flujo de Trabajo
9.
Neuroimage ; 257: 119327, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35636227

RESUMEN

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.


Asunto(s)
Conectoma , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Difusión , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
11.
Mov Disord ; 37(4): 724-733, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936123

RESUMEN

BACKGROUND: Even though Parkinson's disease (PD) is typically viewed as largely affecting gray matter, there is growing evidence that there are also structural changes in the white matter. Traditional connectomics methods that study PD may not be specific to underlying microstructural changes, such as myelin loss. OBJECTIVE: The primary objective of this study is to investigate the PD-induced changes in myelin content in the connections emerging from the basal ganglia and the brainstem. For the weighting of the connectome, we used the longitudinal relaxation rate as a biologically grounded myelin-sensitive metric. METHODS: We computed the myelin-weighted connectome in 35 healthy control subjects and 81 patients with PD. We used partial least squares to highlight the differences between patients with PD and healthy control subjects. Then, a ring analysis was performed on selected brainstem and subcortical regions to evaluate each node's potential role as an epicenter for disease propagation. Then, we used behavioral partial least squares to relate the myelin alterations with clinical scores. RESULTS: Most connections (~80%) emerging from the basal ganglia showed a reduced myelin content. The connections emerging from potential epicentral nodes (substantia nigra, nucleus basalis of Meynert, amygdala, hippocampus, and midbrain) showed significant decrease in the longitudinal relaxation rate (P < 0.05). This effect was not seen for the medulla and the pons. CONCLUSIONS: The myelin-weighted connectome was able to identify alteration of the myelin content in PD in basal ganglia connections. This could provide a different view on the importance of myelination in neurodegeneration and disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Conectoma , Enfermedad de Parkinson , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética , Vaina de Mielina , Enfermedad de Parkinson/diagnóstico por imagen , Sustancia Negra , Sustancia Blanca/diagnóstico por imagen
12.
Netw Neurosci ; 5(2): 358-372, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34189369

RESUMEN

Myelin plays a crucial role in how well information travels between brain regions. Complementing the structural connectome, obtained with diffusion MRI tractography, with a myelin-sensitive measure could result in a more complete model of structural brain connectivity and give better insight into white-matter myeloarchitecture. In this work we weight the connectome by the longitudinal relaxation rate (R1), a measure sensitive to myelin, and then we assess its added value by comparing it with connectomes weighted by the number of streamlines (NOS). Our analysis reveals differences between the two connectomes both in the distribution of their weights and the modular organization. Additionally, the rank-based analysis shows that R1 can be used to separate transmodal regions (responsible for higher-order functions) from unimodal regions (responsible for low-order functions). Overall, the R1-weighted connectome provides a different perspective on structural connectivity taking into account white matter myeloarchitecture.

14.
Elife ; 92020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33084576

RESUMEN

Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analyzed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.


Asunto(s)
Imagen por Resonancia Magnética , Vaina de Mielina/química , Animales , Biomarcadores/análisis , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Ratas
15.
J Alzheimers Dis ; 77(2): 591-605, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741837

RESUMEN

BACKGROUND: Vascular risk factors such as arterial stiffness play an important role in the etiology of Alzheimer's disease (AD), presumably due to the emergence of white matter lesions. However, the impact of arterial stiffness to white matter structure involved in the etiology of AD, including the corpus callosum remains poorly understood. OBJECTIVE: The aims of the study are to better understand the relationship between arterial stiffness, white matter microstructure, and perfusion of the corpus callosum in older adults. METHODS: Arterial stiffness was estimated using the gold standard measure of carotid-femoral pulse wave velocity (cfPWV). Cognitive performance was evaluated with the Trail Making Test part B-A. Neurite orientation dispersion and density imaging was used to obtain microstructural information such as neurite density and extracellular water diffusion. The cerebral blood flow was estimated using arterial spin labelling. RESULTS: cfPWV better predicts the microstructural integrity of the corpus callosum when compared with other index of vascular aging (the augmentation index, the systolic blood pressure, and the pulse pressure). In particular, significant associations were found between the cfPWV, an alteration of the extracellular water diffusion, and a neuronal density increase in the body of the corpus callosum which was also correlated with the performance in cognitive flexibility. CONCLUSION: Our results suggest that arterial stiffness is associated with an alteration of brain integrity which impacts cognitive function in older adults.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Cuerpo Calloso/diagnóstico por imagen , Rigidez Vascular/fisiología , Sustancia Blanca/diagnóstico por imagen , Anciano , Enfermedad de Alzheimer/fisiopatología , Cuerpo Calloso/irrigación sanguínea , Cuerpo Calloso/fisiopatología , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Análisis de la Onda del Pulso/métodos , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/fisiopatología
16.
J Neuroimaging ; 30(5): 674-682, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32453488

RESUMEN

BACKGROUND AND PURPOSE: Hereditary diffuse leukoencephalopathy with spheroids (HDLS) and multiple sclerosis (MS) are demyelinating and neurodegenerative disorders that can be hard to distinguish clinically and radiologically. HDLS is a rare disorder compared to MS, which has led to occurrent misdiagnosis of HDLS as MS. That is problematic since their prognosis and treatment differ. Both disorders are investigated by MRI, which could help to identify patients with high probability of having HDLS, which could guide targeted genetic testing to confirm the HDLS diagnosis. METHODS: Here, we present a machine learning method based on quantitative MRI that can achieve a robust classification of HDLS versus MS. Four HDLS and 14 age-matched MS patients underwent a quantitative brain MRI protocol (synthetic MRI) at 3 Tesla (T) (scan time <7 minutes). We also performed a repeatability analysis of the predicting features to assess their generalizability by scanning a healthy control with five scan-rescans at 3T and 1.5T. RESULTS: Our predicting features were measured with an average confidence interval of 1.7% (P = .01), at 3T and 2.3% (P = .01) at 1.5T. The model gave a 100% correct classification of the cross-validation data when using 5-11 predicting features. When the maximum measurement noise was inserted in the model, the true positive rate of HDLS was 97.2%, while the true positive rate of MS was 99.6%. CONCLUSIONS: This study suggests that computer-assistance in combination with quantitative MRI may be helpful in aiding the challenging differential diagnosis of HDLS versus MS.


Asunto(s)
Encéfalo/diagnóstico por imagen , Leucoencefalopatías/diagnóstico por imagen , Aprendizaje Automático , Esclerosis Múltiple/diagnóstico por imagen , Adulto , Anciano , Diagnóstico Diferencial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
17.
Neuroimage Clin ; 26: 102007, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31668489

RESUMEN

OBJECTIVE: Central artery stiffness is a confirmed predictor of cardiovascular health status that has been consistently associated with cognitive dysfunction and dementia. The European Society of Hypertension has established a threshold of arterial stiffness above which a cardiovascular event is likely to occur. However, the threshold at which arterial stiffness alters brain integrity has never been established. METHODS: The aim of this study is to determine the arterial stiffness cut-off value at which there is an impact on the white matter microstructure. This study has been conducted with 53 cognitively elderly without dementia. The integrity of the white matter was assessed using diffusion tensor metrics. Central artery stiffness was evaluated by measuring the carotid-femoral pulse wave velocity (cfPWV). The statistical analyses included 4 regions previously denoted vulnerable to increased central arterial stiffness (the corpus callosum, the internal capsule, the corona radiata and the superior longitudinal fasciculus). RESULTS: The results of this study call into question the threshold value of 10 m/s cfPWV established by the European Society of Hypertension to classify patients in neuro-cardiovascular risk groups. Our results suggest that the cfPWV threshold value would be approximately 8.5 m/s when the microstructure of the white matter is taken as a basis for comparison. CONCLUSIONS: Adjustment of the cfPWV value may be necessary for a more accurate distinction between lower and higher risk group of patients for white matter microstructural injury related to arterial stiffness. Targeting the highest risk group for prevention methods may, in turn, help preserve brain health and cognitive functions.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Velocidad de la Onda del Pulso Carotídeo-Femoral/normas , Función Ejecutiva/fisiología , Hipertensión/diagnóstico , Rigidez Vascular/fisiología , Sustancia Blanca/anatomía & histología , Anciano , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen
18.
Neuroimage ; 202: 116156, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31491525

RESUMEN

Atlases of the central nervous system are essential for understanding the pathophysiology of neurological diseases, which remains one of the greatest challenges in neuroscience research today. These atlases provide insight into the underlying white matter microstructure and have been created from a variety of animal models, including rats. Although existing atlases of the rat spinal cord provide some details of axon microstructure, there is currently no histological dataset that quantifies axon morphometry exhaustively in the entire spinal cord. In this study, we created the first comprehensive rat spinal cord atlas of the white matter microstructure with quantifiable axon and myelin morphometrics. Using full-slice scanning electron microscopy images and state-of-the-art segmentation algorithms, we generated an atlas of microstructural metrics such as axon diameter, axonal density and g-ratio. After registering the Watson spinal cord white matter atlas to our template, we computed statistics across metrics, spinal levels and tracts. We notably found that g-ratio is relatively constant, whereas axon diameter showed the greatest variation. The atlas, data and full analysis code are freely available at: https://github.com/neuropoly/atlas-rat.


Asunto(s)
Axones/ultraestructura , Neuronas/ultraestructura , Médula Espinal/ultraestructura , Algoritmos , Animales , Atlas como Asunto , Femenino , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas Sprague-Dawley , Sustancia Blanca/ultraestructura
20.
Neuroimage ; 186: 577-585, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448213

RESUMEN

BACKGROUND AND PURPOSE: The stiffness of large arteries and increased pulsatility can have an impact on the brain white matter (WM) microstructure, however those mechanisms are still poorly understood. The aim of this study was to investigate the association between central artery stiffness, axonal and myelin integrity in 54 cognitively unimpaired elderly subjects (65-75 years old). METHODS: The neuronal fiber integrity of brain WM was assessed using diffusion tensor metrics and magnetization transfer imaging as measures of axonal organization (Fractional anisotropy, Radial diffusivity) and state of myelination (Myelin volume fraction). Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). Statistical analyses included 4 regions (the corpus callosum, the internal capsule, the corona radiata and the superior longitudinal fasciculus) which have been previously denoted as vulnerable to increased central artery stiffness. RESULTS: cfPWV was significantly associated with fractional anisotropy and radial diffusivity (p < 0.05, corrected for multiple comparisons) but not with myelin volume fraction. Findings from this study also show that improved executive function performance correlates with Fractional anisotropy positively (p < 0.05 corrected) as well as with myelin volume fraction and radial diffusivity negatively (p < 0.05 corrected). CONCLUSIONS: These findings suggest that arterial stiffness is associated with axon degeneration rather than demyelination. Controlling arterial stiffness may play a role in maintaining the health of WM axons in the aging brain.


Asunto(s)
Envejecimiento , Arterias/diagnóstico por imagen , Axones , Función Ejecutiva/fisiología , Imagen por Resonancia Magnética/métodos , Vaina de Mielina , Análisis de la Onda del Pulso/métodos , Rigidez Vascular , Sustancia Blanca/diagnóstico por imagen , Anciano , Envejecimiento/patología , Envejecimiento/fisiología , Axones/patología , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Vaina de Mielina/patología , Rigidez Vascular/fisiología , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA