Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 131(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623331

RESUMEN

Pancreatic ß cell failure in type 2 diabetes mellitus (T2DM) is attributed to perturbations of the ß cell's transcriptional landscape resulting in impaired glucose-stimulated insulin secretion. Recent studies identified SLC4A4 (a gene encoding an electrogenic Na+-coupled HCO3- cotransporter and intracellular pH regulator, NBCe1) as one of the misexpressed genes in ß cells of patients with T2DM. Thus, in the current study, we set out to test the hypothesis that misexpression of SLC4A4/NBCe1 in T2DM ß cells contributes to ß cell dysfunction and impaired glucose homeostasis. To address this hypothesis, we first confirmed induction of SLC4A4/NBCe1 expression in ß cells of patients with T2DM and demonstrated that its expression was associated with loss of ß cell transcriptional identity, intracellular alkalinization, and ß cell dysfunction. In addition, we generated a ß cell-selective Slc4a4/NBCe1-KO mouse model and found that these mice were protected from diet-induced metabolic stress and ß cell dysfunction. Importantly, improved glucose tolerance and enhanced ß cell function in Slc4a4/NBCe1-deficient mice were due to augmented mitochondrial function and increased expression of genes regulating ß cell identity and function. These results suggest that increased ß cell expression of SLC4A4/NBCe1 in T2DM plays a contributory role in promotion of ß cell failure and should be considered as a potential therapeutic target.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Expresión Génica , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/prevención & control , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Obesidad/genética , Obesidad/metabolismo , Simportadores de Sodio-Bicarbonato/deficiencia , Simportadores de Sodio-Bicarbonato/genética , Estrés Fisiológico
2.
J Vis Exp ; (174)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34459826

RESUMEN

Common modalities for in vivo imaging of rodents include positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). Each method has limitations and advantages, including availability, ease of use, cost, size, and the use of ionizing radiation or magnetic fields. This protocol describes the use of 3D robotic US for in vivo imaging of rodent kidneys and heart, subsequent data analysis, and possible research applications. Practical applications of robotic US are the quantification of total kidney volume (TKV), as well as the measurement of cysts, tumors, and vasculature. Although the resolution is not as high as other modalities, robotic US allows for more practical high throughput data collection. Furthermore, using US M-mode imaging, cardiac function may be quantified. Since the kidneys receive 20%-25% of the cardiac output, assessing cardiac function is critical to the understanding of kidney physiology and pathophysiology.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Animales , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...