Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 38(48): 14981-14987, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36395357

RESUMEN

Capturing the surface-structural dynamics of metal electrocatalysts under certain electrochemical environments is intriguingly desired for understanding the behavior of various metal-based electrocatalysts. However, in situ monitoring of the evolution of a polycrystalline metal surface at the interface of electrode-electrolyte solutions at negative/positive potentials with high-resolution scanning tunneling microscopy (STM) is seldom. Here, we use electrochemical STM (EC-STM) for in situ monitoring of the surface evolution process of a silver electrode in both an aqueous sodium hydroxide solution and an ionic liquid of 1-methyl-1-octylpyrrolidinium bis(trifluoromethylsulfonyl) amide driven by negative potentials. We found silver underwent a surface change from a polycrystalline structure to a well-defined surface arrangement in both electrolytes. In NaOH aqueous solution, the silver surface transferred in several minutes at a turning-point potential where hydrogen adsorbed and formed mainly (111) and (100) pits. Controversially, the surface evolution in the ionic liquid was much slower than that in the aqueous solution, and cation adsorption was observed in a wide potential range. The surface evolution of silver is proposed to be linked to the surface adsorbates as well as the formation of their complexes with undercoordinated silver atoms. The results also show that cathodic annealing of polycrystalline silver is a cheap, easy, and reliable way to obtain quasi-ordered crystal surfaces.

2.
Nat Commun ; 13(1): 4806, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974010

RESUMEN

Accurate forecasting of lithium-ion battery performance is essential for easing consumer concerns about the safety and reliability of electric vehicles. Most research on battery health prognostics focuses on the research and development setting where cells are subjected to the same usage patterns. However, in practical operation, there is great variability in use across cells and cycles, thus making forecasting challenging. To address this challenge, here we propose a combination of electrochemical impedance spectroscopy measurements with probabilistic machine learning methods. Making use of a dataset of 88 commercial lithium-ion coin cells generated via multistage charging and discharging (with currents randomly changed between cycles), we show that future discharge capacities can be predicted with calibrated uncertainties, given the future cycling protocol and a single electrochemical impedance spectroscopy measurement made immediately before charging, and without any knowledge of usage history. The results are robust to cell manufacturer, the distribution of cycling protocols, and temperature. The research outcome also suggests that battery health is better quantified by a multidimensional vector rather than a scalar state of health.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Impedancia Eléctrica , Electrodos , Iones , Litio/química , Reproducibilidad de los Resultados
3.
ACS Appl Mater Interfaces ; 12(36): 40296-40309, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32841558

RESUMEN

Polyoxometalates (POMs) have emerged as potential anode materials for lithium-ion batteries (LIBs) owing to their ability to transfer multiple electrons. Although POM anode materials exhibit notable results in LIBs, their energy-storage mechanisms have not been well-investigated. Here, we utilize various in operando and ex situ techniques to verify the charge-storage mechanisms of a Keplerate-type POM Na2K23{[(MoVI)MoVI5O21(H2O)3(KSO4)]12 [(VIVO)30(H2O)20(SO4)0.5]}·ca200H2O ({Mo72V30}) anode in LIBs. The {Mo72V30} anode provides a high reversible capacity of up to ∼1300 mA h g-1 without capacity fading for up to 100 cycles. The lithium-ion storage mechanism was studied systematically through in operando synchrotron X-ray absorption near-edge structure, ex situ X-ray diffraction, ex situ extended X-ray absorption fine structure, ex situ transmission electron microscopy, in operando synchrotron transmission X-ray microscopy, and in operando Raman spectroscopy. Based on the abovementioned results, we propose that the open hollow-ball structure of the {Mo72V30} molecular cluster serves as an electron/ion sponge that can store a large number of lithium ions and electrons reversibly via multiple and reversible redox reactions (Mo6+ ↔ Mo1+ and V5+/V4+↔ V1+) with fast lithium diffusion kinetics (DLi+: 10-9-10-10 cm2 s-1). No obvious volumetric expansion of the microsized {Mo72V30} particle is observed during the lithiation/delithiation process, which leads to high cycling stability. This study provides comprehensive analytical methods for understanding the lithium-ion storage mechanism of such complicated POMs, which is important for further studies of POM electrodes in energy-storage applications.

4.
Nat Commun ; 11(1): 1706, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249782

RESUMEN

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here, we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS)-a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis-with Gaussian process machine learning. Over 20,000 EIS spectra of commercial Li-ion batteries are collected at different states of health, states of charge and temperatures-the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

5.
Chemphyschem ; 20(22): 3004-3009, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31670890

RESUMEN

Catalytic effects of surface groups on porous carbon electrodes are claimed in literature for the redox reactions V(II)/V(III) and V(IV)/V(V). The literature is critically analysed also in relation to work of this group. A method how to overcome the problem of assessing the electrochemically active surface area on porous electrodes is presented. Applying this method, no catalytic effects for above reactions can be substantiated. It is further pointed out that the parameters electrochemical potential and temperature need to be used to assess electrocatalysis.

6.
Sci Rep ; 8(1): 6989, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725066

RESUMEN

RNA presents intringuing roles in many cellular processes and its versatility underpins many different applications in synthetic biology. Nonetheless, RNA origami as a method for nanofabrication is not yet fully explored and the majority of RNA nanostructures are based on natural pre-folded RNA. Here we describe a biologically inert and uniquely addressable RNA origami scaffold that self-assembles into a nanoribbon by seven staple strands. An algorithm is applied to generate a synthetic De Bruijn scaffold sequence that is characterized by the lack of biologically active sites and repetitions larger than a predetermined design parameter. This RNA scaffold and the complementary staples fold in a physiologically compatible isothermal condition. In order to monitor the folding, we designed a new split Broccoli aptamer system. The aptamer is divided into two nonfunctional sequences each of which is integrated into the 5' or 3' end of two staple strands complementary to the RNA scaffold. Using fluorescence measurements and in-gel imaging, we demonstrate that once RNA origami assembly occurs, the split aptamer sequences are brought into close proximity forming the aptamer and turning on the fluorescence. This light-up 'bio-orthogonal' RNA origami provides a prototype that can have potential for in vivo origami applications.


Asunto(s)
Nanotubos de Carbono , Pliegue del ARN , ARN/metabolismo , Fluorometría , Imagen Óptica , ARN/genética , Temperatura
7.
Inorg Chem ; 57(2): 676-680, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29292990

RESUMEN

We demonstrate that (NH4)2Si0.5Ti0.5P4O13 is an excellent proton conductor. The crystallographic information concerning the hydrogen positions is unraveled from neutron-powder-diffraction (NPD) data for the first time. This study shows that all the hydrogen atoms are connected though H bonds, establishing a two-dimensional path between the [(Si0.5Ti0.5)P4O132-]n layers for proton diffusion across the crystal structure by breaking and reconstructing intermediate H-O═P bonds. This transient species probably reduces the potential energy of the H jump from an ammonium unit to the next neighboring NH4+ unit. Both theoretical and experimental results support an interstitial-proton-conduction mechanism. The proton conductivities of (NH4)2Si0.5Ti0.5P4O13 reach 0.0061 and 0.024 S cm-1 in humid air at 125 and 250 °C, respectively. This finding demonstrates that (NH4)2Si0.5Ti0.5P4O13 is a promising electrolyte material operating at 150-250 °C. This work opens up a new avenue for designing and fabricating high-performance inorganic electrolytes.

8.
J Am Chem Soc ; 140(1): 401-405, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29232117

RESUMEN

Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

9.
Heliyon ; 3(11): e00459, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29202109

RESUMEN

Streptomycetes are Gram-positive filamentous soil bacteria that grow by tip extension and branching, forming a network of multinucleoid hyphae. These bacteria also have an elaborate process of morphological differentiation, which involves the formation of an aerial mycelium that eventually undergoes extensive septation into chains of uninucleoid cells that further metamorphose into spores. The tubulin-like FtsZ protein is essential for this septation process. Most of the conserved cell division genes (including ftsZ) have been inactivated in Streptomyces without the anticipated lethality, based on studies of many other bacteria. However, there are still some genes of the Streptomyces division and cell wall (dcw) cluster that remain uncharacterized, the most notable example being the two conserved genes immediately adjacent to ftsZ (i.e. ylmDE). Here, for the first time, we made a ylmDE mutant in Streptomyces venezuelae and analysed it using epifluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The mutant showed no significant effects on growth, cross-wall formation and sporulation in comparison to the wild type strain, which suggests that the ylmDE genes do not have an essential role in the Streptomyces cell division cycle (at least under the conditions of this study).

10.
ACS Synth Biol ; 6(7): 1140-1149, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28414914

RESUMEN

Nanotechnology and synthetic biology are rapidly converging, with DNA origami being one of the leading bridging technologies. DNA origami was shown to work well in a wide array of biotic environments. However, the large majority of extant DNA origami scaffolds utilize bacteriophages or plasmid sequences thus severely limiting its future applicability as a bio-orthogonal nanotechnology platform. In this paper we present the design of biologically inert (i.e., "bio-orthogonal") origami scaffolds. The synthetic scaffolds have the additional advantage of being uniquely addressable (unlike biologically derived ones) and hence are better optimized for high-yield folding. We demonstrate our fully synthetic scaffold design with both DNA and RNA origamis and describe a protocol to produce these bio-orthogonal and uniquely addressable origami scaffolds.


Asunto(s)
ADN/química , Nanoestructuras/química , Nanotecnología/métodos , ARN/química , Biología Sintética/métodos , Microscopía de Fuerza Atómica
11.
Phys Chem Chem Phys ; 19(4): 3358-3365, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28091628

RESUMEN

Polyoxometalates (POMs) have been reported as promising electrode materials for energy storage applications due to their ability to undergo fast redox reactions with multiple transferred electrons per polyanion. Here we employ a polyoxovanadate salt, Na6[V10O28], as an electrode material in a lithium-ion containing electrolyte and investigate the electron transfer properties of Na6[V10O28] on long and short timescales. Looking at equilibrated systems, in situ V K-edge X-ray absorption near edge structure (XANES) studies show that all 10 V5+ ions in Na6[V10O28] can be reversibly reduced to V4+ in a potential range of 4-1.75 V vs. Li/Li+. Focusing on the dynamic response of the electrode to potential pulses, the kinetics of Na6[V10O28] electrodes and the dependence of the fundamental electron transfer rate k0 on temperature are investigated. From these measurements we calculate the reorganization energy and compare it with theoretical predictions. The experimentally determined reorganization energy of λ = 184 meV is in line with the theoretical estimate and confirms the hypothesis of small values of λ for POMs due to electrostatic shielding of the redox center from the solvent.

12.
ACS Appl Mater Interfaces ; 8(42): 29186-29193, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27726332

RESUMEN

We report that an ultrafast kinetics of reversible metal-ion insertion can be realized in anatase titanium dioxide (TiO2). Niobium ions (Nb5+) were carefully chosen to dope and drive anatase TiO2 into very thin nanosheets standing perpendicularly onto transparent conductive electrode (TCE) and simultaneously construct TiO2 with an ion-conducting surface together with expanded ion diffusion channels, which enabled ultrafast metal ions to diffuse across the electrolyte/solid interface and into the bulk of TiO2. To demonstrate the superior metal-ion insertion rate, the electrochromic features induced by ion intercalation were examined, which exhibited the best color switching speed of 4.82 s for coloration and 0.91 s for bleaching among all reported nanosized TiO2 devices. When performed as the anode for the secondary battery, the modified TiO2 was capable to deliver a highly reversible capacity of 61.2 mAh/g at an ultrahigh specific current rate of 60 C (10.2 A/g). This fast metal-ion insertion behavior was systematically investigated by the well-controlled electrochemical approaches, which quantitatively revealed both the enhanced surface kinetics and bulk ion diffusion rate. Our study could provide a facile methodology to modulate the ion diffusion kinetics for metal oxides.

13.
Nanoscale ; 8(29): 14004-14, 2016 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-27140292

RESUMEN

The SEI-formation on graphitic electrodes operated as an Li(+)-ion battery anode in a standard 1 M LiPF6 EC/DMC (1 : 1) electrolyte has been studied in situ by EC-STM. Two different modes of in situ study were applied, one, which allowed to follow topographic and crystallographic changes (solvent cointercalation, graphite exfoliation, SEI precipitation on the HOPG basal plane) of the graphite electrode during SEI-formation, and the second, which gave an insight into the SEI precipitation on the HOPG basal plane in real time. From the in situ EC-STM studies, not only conclusions about the SEI-topography could be drawn, but also about the formation mechanism and the chemical composition, which strongly depend on the electrode potential. It was shown that above 1.0 V vs. Li/Li(+) the SEI-formation is still reversible, since the molecular structure of the solvent molecules remains intact during an initial reduction step. During further reduction, the molecular structures of the solvents are destructed, which causes the irreversible charge loss. The STM studies were completed by electrochemical methods, like cyclic voltammetry, the potentiostatic intermittent titration technique and charge/discharge tests of MCMB electrodes.

14.
Inorg Chem ; 55(6): 2755-64, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26931312

RESUMEN

The two 16-manganese-containing, Keggin-based 36-tungsto-4-silicates [Mn(III)10Mn(II)6O6(OH)6(PO4)4(A-α-SiW9O34)4](28-) (1) and [Mn(III)4Mn(II)12(OH)12(PO4)4(A-α-SiW9O34)4](28-) (2) have been prepared by reaction of the trilacunary Keggin precursor [A-α-SiW9O34](10-) with either Mn(OOCCH3)3·2H2O (for 1) or MnCl2·4H2O (for 2), in aqueous phosphate solution at pH 9. Polyanions 1 and 2 comprise mixed-valent, cationic {Mn(III)10Mn(II)6O6(OH)6}(24+) and {Mn(III)4Mn(II)12(OH)12}(24+) cores, respectively, encapsulated by four phosphate groups and four {SiW9} units in a tetrahedral fashion. Both polyanions were structurally and compositionally characterized by single-crystal XRD, IR, thermogravimetric analysis, and X-ray absorption spectroscopy. Furthermore, studies were performed probing the magnetic, electrochemical, oxidation catalytic, and Li-ion battery performance of 1 and 2.

15.
Nanoscale ; 7(17): 7934-41, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25866193

RESUMEN

A novel nanohybrid material that combines single-walled carbon nanotubes (SWCNTs) with a polyoxometalate (TBA)5[PVMoO40] (TBA-PV2Mo10, TBA: [(CH3(CH2)3)4N](+), tetra-n-butyl ammonium) is investigated for the first time as an electrode material for supercapacitors (SCs) in this study. The SWCNT-TBA-PV2Mo10 material has been prepared by a simple solution method which electrostatically attaches anionic [PV2Mo10O40](5-) anions with organic TBA cations on the SWCNTs. The electrochemical performance of SWCNT-TBA-PV2Mo10 electrodes is studied in an acidic aqueous electrolyte (1 M H2SO4) by galvanostatic charge/discharge and cyclic voltammetry. In this SWCNT-TBA-PV2Mo10 nanohybrid material, TBA-PV2Mo10 provides redox activity while benefiting from the high electrical conductivity and high double-layer capacitance of the SWCNTs that improve both energy and power density. An assembled SWCNT-TBA-PV2Mo10 symmetric SC exhibits a 39% higher specific capacitance as compared to a symmetric SC employing only SWCNTs as electrode materials. Furthermore, the SWCNT-TBA-PV2Mo10 SC exhibits excellent cycling stability, retaining 95% of its specific capacitance after 6500 cycles.

16.
Chemphyschem ; 15(10): 2162-9, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24816786

RESUMEN

Polyoxovanadate Na(6)V(10)O(28) is investigated for the first time as electrode material for supercapacitors (SCs). The electrochemical properties of Na(6)V(10)O(28) electrodes are studied in Li(+) -containing organic electrolyte (1 M LiClO(4) in propylene carbonate) by galvanostatic charge/discharge and cyclic voltammetry in a three-electrode configuration. Na(6)V(10)O(28) electrodes exhibit high specific capacitances of up to 354 F g(-1). An asymmetric SC with activated carbon as positive electrode and Na(6)V(10)O(28) as negative electrode is fabricated and exhibits a high energy density of 73 Wh kg(-1) with a power density of 312 W kg(-1), which successfully demonstrates that Na(6)V(10)O(28) is a promising electrode material for high-energy SC applications.

17.
Inorg Chem ; 53(11): 5663-73, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24835282

RESUMEN

The five manganese-containing, Keggin-based tungstosilicates [Mn(II)3(OH)3(H2O)3(A-α-SiW9O34)](7-) (1), [Mn(III)3(OH)3(H2O)3(A-α-SiW9O34)](4-) (2), [Mn(III)3(OH)3(H2O)3(A-ß-SiW9O34)](4-) (3), [Mn(III)3Mn(IV)O3(CH3COO)3(A-α-SiW9O34)](6-) (4), and [Mn(III)3Mn(IV)O3(CH3COO)3(A-ß-SiW9O34)](6-) (5) were synthesized in aqueous medium by interaction of [A-α-SiW9O34](10-) or [A-ß-SiW9O34H](9-) with either MnCl2 (1) or [Mn(III)8Mn(IV)4O12(CH3COO)16(H2O)4] (2-5) under carefully adjusted reaction conditions. The obtained salts of these polyanions were analyzed in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric analysis. The salts of polyanions 1, 2, and 4 were further characterized in the solid state by magnetic studies, as well as in solution by electrochemistry.


Asunto(s)
Manganeso/química , Silicatos/síntesis química , Compuestos de Tungsteno/síntesis química , Modelos Moleculares , Estructura Molecular , Silicatos/química , Compuestos de Tungsteno/química
18.
Langmuir ; 28(5): 2455-64, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22204422

RESUMEN

Quantitative subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was used to determine the conformation and orientation of sodium dodecyl sulfate (SDS) molecules adsorbed at the single crystal Au(111) surface. The SDS molecules form a hemimicellar/hemicylindrical (phase I) structure for the range of potentials between -200 ≤ E < 450 mV and condensed (phase II) film for electrode potentials ≥500 mV vs Ag/AgCl. The SNIFTIRS measurements indicate that the alkyl chains within the two adsorbed states of SDS film are in the liquid-crystalline state rather than the gel state. However, the sulfate headgroup is in an oriented state in phase I and is disordered in phase II. The newly acquired SNIFTIR spectroscopy measurements were coupled with previous electrochemical, atomic force microscopy, and neutron reflectivity data to improve the current existing models of the SDS film adsorbed on the Au(111) surface. The IR data support the existence of a hemicylindrical film for SDS molecules adsorbed at the Au(111) surface in phase I and suggest that the structure of the condensed film in phase II can be more accurately modeled by a disordered bilayer.


Asunto(s)
Oro/química , Dodecil Sulfato de Sodio/química , Adsorción , Electrodos , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
19.
Molecules ; 16(12): 10059-77, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22146369

RESUMEN

Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.


Asunto(s)
Boro/química , Diamante/química , Electroquímica/métodos , Oro/química , Grafito/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Catálisis , Electricidad , Hidrógeno/química , Nanopartículas del Metal/ultraestructura , Microscopía de Fuerza Atómica , Oxidación-Reducción , Oxígeno/química , Propiedades de Superficie , Temperatura
20.
Phys Chem Chem Phys ; 13(28): 12883-91, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21687867

RESUMEN

Platinum nanoparticles supported on boron-doped single-crystalline diamond surfaces were used as a model system to investigate the catalytic activity with respect to the influence of particle morphology, particle density and surface preparation of the diamond substrates. We report on the preparation, characterization and activity regarding hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) of these Pt/diamond electrodes. Two kinds of diamond layers with boron doping above 10(20) cm(-3) were grown epitaxially on (100)-oriented diamond substrates; post-treatments of wet chemical oxidation and radio frequency (rf) oxygen plasma treatments were applied. Electrochemical deposition of Pt was performed using a potentiostatic double-pulse technique, which allowed variation of the particle size in the range between 1 nm and 15 nm in height and 5 nm and 50 nm in apparent radius, while keeping the particle density constant. Higher nucleation densities on the plasma processed surface at equal deposition parameters could be related to the plasma-induced surface defects. Electrochemical characterization shows that the platinum particles act as nanoelectrodes and form an ohmic contact with the diamond substrate. The catalytic activity regarding HER and HOR of the platinum nanoparticles exhibits no dependence on the particle size down to particle heights of ∼1 nm. The prepared Pt on diamond(100) samples show a similar platinum-specific activity as bulk platinum. Therefore, while keeping the activity constant, the well-dispersed particles on diamond offer an optimized surface-to-material ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...