Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(22): 4861-4872, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942955

RESUMEN

Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L-1 (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L-1 (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, KD ~ 4.4 nM, was consistent with literature values.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Estándares de Referencia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Biotinilación , COVID-19/virología , Prueba Serológica para COVID-19/métodos
2.
Talanta ; 275: 126147, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677170

RESUMEN

Rapid testing has become an indispensable strategy to identify the most infectious individuals and prevent the transmission of SARS-CoV-2 in vulnerable populations. As such, COVID-19 rapid antigen tests (RATs) are being manufactured faster than ever yet lack relevant comparative analyses required to inform on absolute analytical sensitivity and performance, limiting end-user ability to accurately compare brands for decision making. To date, more than 1000 different COVID-19 RATs are commercially available in the world, most of which detect the viral nucleocapsid protein (NP). Here, we examine and compare the analytical sensitivity of 26 RATs that are readily available in Canada and/or Australia using two NP reference materials (RMs) - a fluorescent NP-GFP expressed in bacterial cells and NCAP-1 produced in a mammalian expression system. Both RMs generate highly comparable results within each RAT, indicating minimal bias due to differing expression systems and final buffer compositions. However, we demonstrate orders of magnitude differences in analytical sensitivities among distinct RATs, and find little correlation with the median tissue culture infectious dose (TCID50) assay values reported by manufacturers. In addition, two COVID-19/Influenza A&B combination RATs were evaluated with influenza A NP-GFP. Finally, important logistics considerations are discussed regarding the robustness, ease of international shipping and safe use of these reference proteins. Taken together, our data highlight the need for and practicality of readily available, reliable reference proteins for end-users that will ensure that manufacturers maintain batch-to-batch quality and accuracy of RATs. They will aid international public health and government agencies, as well as health and aged care facilities to reliably benchmark and select the best RATs to curb transmission of future SARS-CoV-2 and influenza outbreaks.


Asunto(s)
Antígenos Virales , Prueba Serológica para COVID-19 , COVID-19 , SARS-CoV-2 , Canadá , Australia , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , Humanos , Prueba Serológica para COVID-19/métodos , Antígenos Virales/análisis , Antígenos Virales/inmunología , Sensibilidad y Especificidad , Proteínas de la Nucleocápside de Coronavirus/inmunología , Animales
3.
Anal Bioanal Chem ; 414(12): 3561-3569, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35260938

RESUMEN

Development of diagnostic testing capability has advanced with unprecedented pace in response to the COVID-19 pandemic. An undesirable effect of such speed is a lack of standardization, often leading to unreliable test results. To assist the research community surmount this challenge, the National Research Council Canada has prepared a SARS-CoV-2 spike protein reference material, SMT1-1, as a buffered solution. Value assignment was achieved by amino acid analysis (AAA) by double isotope dilution liquid chromatography-tandem mass spectrometry (LC-ID-MS/MS) following acid hydrolysis of the protein, in combination with ultraviolet-visible spectrophotometry (UV-Vis) based on tryptophan and tyrosine absorbance at 280 nm. Homogeneity of the material was established through spectrophotometric absorbance readings at 280 nm. Transportation and long-term storage stabilities were assessed by monitoring relative changes in oligomeric state by size-exclusion liquid chromatography (LC-SEC) with UV detection. The molar concentration of the spike protein in SMT1-1 was 5.68 ± 0.22 µmol L-1 (k = 2, 95% CI), with the native trimeric form accounting for ~ 94% of the relative abundance. Reference mass concentration and mass fraction values were calculated using the protein molecular weight and density of the SMT1-1 solution. The spike protein is highly glycosylated which leads to analyte ambiguity when reporting the more commonly used mass concentration. After glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection, we thus reported mass concentration values for both the protein-only portion and intact glycoprotein as 0.813 ± 0.030 and 1.050 ± 0.068 mg mL-1 (k = 2), respectively.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Glicoproteínas , Humanos , Pandemias , Estándares de Referencia , SARS-CoV-2 , Espectrometría de Masas en Tándem/métodos
4.
ACS Meas Sci Au ; 2(6): 620-628, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36785774

RESUMEN

Rapid antigen tests have become a widely used COVID-19 diagnostic tool with demand accelerating in response to the highly contagious SARS-CoV-2 Omicron variant. Hundreds of such test kits are approved for use worldwide, predominantly reporting on the presence of the viral nucleocapsid (N) protein, yet the comparability among manufacturers remains unclear and the need for reference standards is recognized. To address this lack of standardization, the National Research Council Canada has developed a SARS-CoV-2 nucleocapsid protein reference material solution, NCAP-1. Reference value determination for N protein content was realized by amino acid analysis (AAA) via double isotope dilution liquid chromatography-tandem mass spectrometry (LC-ID-MS/MS) following acid hydrolysis of the protein, in conjunction with UV spectrophotometry based on tryptophan and tyrosine absorbance at 280 nm. The homogeneity of the material was established through spectrophotometric absorbance readings at 280 nm. The molar concentration of the N protein in NCAP-1 was 10.0 ± 1.9 µmol L-1 (k = 2, 95% confidence interval). Reference mass concentration and mass fraction values were subsequently calculated using the protein molecular weight and density of the NCAP-1 solution. Changes to protein higher-order structure, probed by size-exclusion liquid chromatography (LC-SEC) with UV detection, were used to evaluate transportation and storage stabilities. LC-SEC revealed nearly 90% of the N protein in the material is present as a mixture of hexamers and tetramers. The remaining low molecular weight species (<30 kDa) were interrogated by top-down mass spectrometry and determined to be autolysis products homologous to those previously documented for N protein of the original SARS-CoV [Biochem. Biophys. Res. Commun.2008t, 377, 429-433].

5.
J Am Soc Mass Spectrom ; 32(3): 753-761, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33534566

RESUMEN

The number of approved peptide therapeutics, as well as those in development, has been increasing in recent years. Frequently, the biological activity of such peptides is elicited through the adoption of secondary structural elements upon interaction with their cellular target. However, many therapeutic peptides are unstructured in solution and accordingly exhibit a poor bioavailability due to rapid proteolysis in vivo. To combat this degradation, numerous naturally occurring peptides with therapeutic properties contain stabilizing features, such as N-to-C cyclization or disulfide bonds. Recently, hydrocarbon stapling via non-native amino acid substitution followed by ring-closing metathesis has been shown to induce a dramatic stabilization of α-helical peptides. Identifying the ideal staple location along the peptide backbone is a critical developmental step, and methods to streamline this optimization are needed. Mass spectrometry-based methods such as ion mobility (IM) and hydrogen-deuterium exchange (HDX) can detect multiple discrete peptide conformations, a significant advantage over bulk spectroscopic techniques. In this study we use IM-MS and HDX-MS to demonstrate that the native 36-residue enfuvirtide peptide is highly dynamic in solution and the conformational ensemble populated by stabilized constructs depends heavily on the staple location. Further, our measurements yielded results that correlate well with the average α-helical content measured by circular dichroism. The MS-based approaches described herein represent sensitive and potentially high-throughput methods for characterizing and identifying optimally stapled peptides.

6.
Anal Bioanal Chem ; 411(19): 4729-4737, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30397758

RESUMEN

Disulfide bonds are critical linkages for maintaining protein structure and enzyme activity. These linkages, however, can limit peptide sequencing efforts by mass spectrometry (MS) and often require chemical reduction and alkylation. Under such conditions, information regarding cysteine connectivity is lost. Online partial disulfide reduction within the electrospray (ESI) source has recently been established as a means to identify complex cysteine linkage patterns in a liquid chromatography-MS experiment without the need for sample pre-treatment. Corona discharge (CD) is invoked as the causative factor of this in-source reduction (ISR); however, evidence remains largely circumstantial. In this study, we demonstrate that instrumental factors-nebulizing gas, ESI capillary material, organic solvent content, ESI spray needle-to-MS distance-all modulate the degree of reduction observed for the single disulfide in oxytocin, further implicating CD in ISR. Rigorous analysis of solution conditions, however, reveals that corona discharge alone can induce only minor disulfide reduction. We establish that CD-ESI of peptide solutions containing formic acid or its conjugate base results in a dramatic increase in disulfide reduction. It is also determined that ISR is exacerbated at low pH for complex peptides containing multiple disulfide bonds and possessing higher-order structure, as well as for a small protein. Overall, our results demonstrate that ESI of formate/formic acid-containing solutions under corona discharge conditions facilitates disulfide ISR, likely by a similar reduction pathway measured in γ-radiolysis studies nearly three decades ago.


Asunto(s)
Disulfuros/química , Formiatos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Oxidación-Reducción , Conformación Proteica , Proteínas/química , Soluciones
7.
Anal Bioanal Chem ; 410(26): 6719-6731, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30143839

RESUMEN

The purity value assignment of metrologically traceable peptide reference standards requires specialized primary methods. Conventionally, amino acid analysis by isotope dilution tandem mass spectrometry (LC-MS/MS) following peptide hydrolysis is employed as a reference method. By contrast, quantitative nuclear magnetic resonance (qNMR) spectroscopy allows for quantitation of intact peptides, thus eliminating potential bias due to hydrolysis. Both methods are susceptible to interference from related peptide impurities, which need to be accurately measured and accounted for. The mass balance approach has also been employed for peptide purity measurements, whereby the purity is defined by the sum of the mass fraction of all impurities identified. Ideally, results from these three orthogonal methods can be combined for final purity assignment of peptide reference standards. Here we report a novel strategy for correcting both LC-MS/MS and 1H-qNMR results for related peptide impurities and combining results from both methods using a Bayesian statistical approach using mass balance results as prior knowledge. The mass balance method relied on a validated 19F-qNMR method to measure the trifluoroacetic acid (TFA) counter-ion, considered an impurity in this case at nearly 25% by mass. Using a candidate certified reference material (CRM) for angiotensin II, excellent agreement was achieved with the three methods. The final purity value assignment of the candidate CRM was 691 ± 9 mg/g (k = 2).


Asunto(s)
Aminoácidos/análisis , Angiotensina II/química , Cromatografía Liquida/métodos , Espectroscopía de Resonancia Magnética/métodos , Péptidos/normas , Espectrometría de Masas en Tándem/métodos , Angiotensina II/análisis , Angiotensina II/normas , Teorema de Bayes , Hidrólisis , Modelos Químicos , Estándares de Referencia , Reproducibilidad de los Resultados , Ácido Trifluoroacético/análisis
8.
Anal Bioanal Chem ; 410(26): 6963-6972, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30128809

RESUMEN

Identification and quantitation of related impurities is vital in obtaining corrected purity values for peptide certified reference materials. The sensitivity and selectivity of high-resolution mass spectrometry (MS) renders it an indispensable technique in this arena. Typical quantitation efforts involve constructing external calibration curves, although analysis of dilute peptide solutions can be complicated by analyte adsorption to vial walls, instrument tubing, etc. The standard addition method alleviates many concerns associated with this sample loss as the calibrant solutions more closely match the matrix of the samples. Yet, both strategies require acquisition of synthetic impurity peptide standards. Label-free proteomics relies on electrospray ionization (ESI)-MS signals to quantify identical peptides across multiple samples; however, peptides of differing sequence can exhibit widely disparate ESI-MS responses. This study explores the use of peak area ratios to quantitate sequence-related peptide impurities in an angiotensin II candidate certified reference material. Using synthetic standards of five abundant substances, impurity mass fractions calculated via the relative response method are in reasonable agreement with those determined from standard addition experiments, whereas external calibration measurements frequently overestimate impurity amounts. For a synthetic peptide and its related sequence impurities, the relative response method can expedite analysis and lower expenditures, and in some cases improve data quality.


Asunto(s)
Angiotensina II/normas , Péptidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Angiotensina II/química , Humanos , Límite de Detección , Péptidos/normas , Estándares de Referencia , Reproducibilidad de los Resultados
9.
J Am Soc Mass Spectrom ; 29(4): 742-751, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29450858

RESUMEN

Many peptides with antimicrobial activity and/or therapeutic potential contain disulfide bonds as a means to enhance stability, and their quantitation is often performed using electrospray ionization mass spectrometry (ESI-MS). Disulfides can be reduced during ESI under commonly used instrument conditions, which has the potential to hinder accurate peptide quantitation. We demonstrate that this in-source reduction (ISR) is predominantly observed for peptides infused from acidic solutions and subjected to elevated ESI voltages (3-4 kV). ISR is readily apparent in the mass spectrum of oxytocin-a small, single disulfide-containing peptide. However, subtle m/z shifts due to partial ISR of highly charged (z ≥ 3) peptides with multiple disulfide linkages may proceed unnoticed. Ion mobility (IM)-MS separates ions on the basis of charge and shape in the gas phase, and using insulin as a model system, we show that IM-MS arrival time distributions (ATDs) are particularly sensitive to partial ISR of large peptides. Isotope modeling allows for the relative quantitation of disulfide-intact and partially reduced states of the mobility-separated peptide conformers. Interestingly, hepcidin peptides ionized from acidic solutions at elevated ESI voltages undergo gas-phase compaction, ostensibly due to partial disulfide ISR. Our IM-MS results lead us to propose that residual acid is the likely cause of disparate ATDs recently measured for hepcidin from different suppliers [Anal. Bioanal. Chem. 409, 2559-2567 (2017)]. Overall, our results demonstrate the utility of IM-MS to detect partial ISR of disulfide-bonded peptides and reinforce the notion that peptide/protein measurements should be carried out using minimally activating instrument conditions. Graphical Abstract ᅟ.


Asunto(s)
Disulfuros/química , Espectrometría de Movilidad Iónica/métodos , Péptidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Bovinos , Hepcidinas/química , Humanos , Insulina/química , Oxitocina/química
10.
Science ; 351(6275)2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26912900

RESUMEN

Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Mutación , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
11.
Anal Chem ; 87(12): 6280-7, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25992468

RESUMEN

Hydrogen exchange (HX) mass spectrometry (MS) of complex mixtures requires a fast, reproducible, and high peak capacity separation prior to MS detection. The current paradigm relies on liquid chromatography (LC) with fast gradients performed at low temperatures to minimize back exchange. Unfortunately, under these conditions, the efficiency of LC is limited due to resistance to mass transfer, reducing the capability to analyze complex samples. Capillary electrophoresis (CE), on the other hand, is not limited by resistance to mass transfer, enabling very rapid separations that are not adversely affected by low temperature. Previously, we have demonstrated an integrated microfluidic device coupling CE with electrospray ionization (ESI) capable of very rapid and high efficiency separations. In this work, we demonstrate the utility of this microchip CE-ESI device for HX MS. High speed CE-ESI of a bovine hemoglobin pepsin digestion was performed in 1 min with a peak capacity of 62 versus a similar LC separation performed in 7 min with peak capacity of 31. A room temperature CE method performed in 1.25 min provided similar deuterium retention as an 8.5 min LC method conducted at 0 °C. Separation of a complex mixture with CE was done with considerably better speed and nearly triple the peak capacity than the equivalent separation by LC. Overall, the results indicate the potential utility of microchip CE-ESI for HX MS.


Asunto(s)
Electroforesis por Microchip , Hemoglobinas/análisis , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Medición de Intercambio de Deuterio , Espectrometría de Masas
12.
Anal Chem ; 85(21): 10471-8, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24088086

RESUMEN

The coupling of electrospray ionization (ESI) with ion mobility-mass spectrometry (IM-MS) allows structural studies on biological macromolecules in a solvent-free environment. Collision cross sections (CCSs) measured by IM-MS provide a measure of analyte size. For native proteins and their complexes, many structural features can be preserved in the gas phase, making IM-MS a powerful approach for a range of bioanalytical applications. In addition to tightly folded conformers, a large number of partially disordered proteins participate in biological processes and disease mechanisms. It remains unclear to what extent IM-MS is suitable for exploring structural properties of these semifolded species. The current work addresses this question, using myoglobin as model system. This protein follows a sequential unfolding pathway that comprises two partially disordered states, i.e., apo-myoglobin (aMb) at pH 7 and pH 4. IM-MS data acquired for these two conformers were compared to those of native holo-myoglobin (hMb) at pH 7 and extensively unfolded aMb at pH 2. When examining individual aMb charge states, the degree of gas phase unfolding is not strongly correlated with the corresponding solution behavior. A key problem is that non-native conformers generate high ESI charge states, resulting in conformational transitions caused by intramolecular electrostatic repulsion. It is possible to establish a link between solution phase and gas phase structure when normalizing CCS distributions according to their respective ESI-MS signal intensities. This approach yields CCS averages that follow the expected progression hMbpH 7 < aMbpH 7 < aMbpH 4 < aMbpH 2. However, this trend mainly reflects the protonation behavior of the conformers during the ESI process, rather than a genuine memory of solution structure. Overall, our data reveal that electrostatically driven expansion as well as collapse events can lead to disparities between gaseous and solution structures for partially unfolded proteins. IM-MS data on non-native conformers should therefore be interpreted with caution.


Asunto(s)
Gases/química , Proteínas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Caballos , Concentración de Iones de Hidrógeno , Desplegamiento Proteico
13.
Anal Chem ; 85(18): 8618-25, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23841479

RESUMEN

Kinetic measurements can provide insights into protein folding mechanisms. However, the initial (submillisecond) stages of folding still represent a formidable analytical challenge. A number of ultrarapid triggering techniques have been available for some time, but coupling of these techniques with detection methods that are capable of providing detailed structural information has proven to be difficult. The current work addresses this issue by combining submillisecond mixing with laser-induced oxidative labeling. Apomyoglobin (aMb) serves as a model system for our measurements. Exposure of the protein to a brief pulse of hydroxyl radical (·OH) at different time points during folding introduces covalent modifications at solvent accessible side chains. The extent of labeling is monitored using mass spectrometry-based peptide mapping, providing spatially resolved measurements of changes in solvent accessibility. The submillisecond mixer used here improves the time resolution by a factor of 50 compared to earlier ·OH labeling experiments from our laboratory. Data obtained in this way indicate that early aMb folding events are driven by both local and sequence-remote docking of hydrophobic side chains. Assembly of a partially formed A(E)G(H) scaffold after 0.2 ms is followed by stepwise consolidation that ultimately yields the native state. Major conformational changes go to completion within 0.1 s. The technique introduced here is capable of providing in-depth structural information on very short time scales that have thus far been dominated by low resolution (global) spectroscopic probes. By employing submillisecond mixing in conjunction with slower mixing techniques, it is possible to observe complete folding pathways, from fractions of a millisecond all the way to minutes.


Asunto(s)
Apoproteínas/análisis , Apoproteínas/química , Mioglobina/análisis , Mioglobina/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Radicales Libres , Caballos , Espectrometría de Masas/métodos , Oxidación-Reducción , Pliegue de Proteína , Estructura Secundaria de Proteína , Factores de Tiempo
14.
J Mol Biol ; 423(5): 789-99, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22940366

RESUMEN

The biologically active conformation of α1-antitrypsin (α1AT) and other serine protease inhibitors represents a metastable state, characterized by an exposed reactive center loop (RCL) that acts as bait for the target enzyme. The protein can also adopt an inactive "latent" conformation that has the RCL inserted as a central strand in ß-sheet A. This latent form is thermodynamically more stable than the active conformation. Nonetheless, folding of α1AT consistently yields the active state. The reasons that the metastable form is kinetically preferred remain controversial. The current work demonstrates that a carefully orchestrated folding mechanism prevents RCL insertion into sheet A. Temporal changes in solvent accessibility during folding are monitored using pulsed oxidative labeling and mass spectrometry. The data obtained in this way complement recent hydrogen/deuterium exchange results. Those hydrogen/deuterium exchange measurements revealed that securing of the RCL by hydrogen bonding of the first ß-strand in sheet C is one factor that favors formation of the active conformation. The oxidative labeling data presented here reveal that this anchoring is preceded by the formation of hydrophobic contacts in a confined region of the protein. This partial collapse sequesters the RCL insertion site early on and is therefore instrumental in steering α1AT towards its active conformation. RCL anchoring by hydrogen bonding starts to contribute at a later stage. Together, these two factors ensure that formation of the active conformation is kinetically favored. This work demonstrates how the use of complementary labeling techniques can provide insights into the mechanisms of protracted folding reactions.


Asunto(s)
Espectrometría de Masas/métodos , alfa 1-Antitripsina/química , Secuencia de Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Mapeo Peptídico , Pliegue de Proteína , Proteínas Recombinantes/química , Solventes/química , Termodinámica
15.
Anal Chem ; 84(21): 9124-30, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23017165

RESUMEN

Mass spectrometry (MS)-based protein conformational studies are a rapidly growing field. The characterization of partially disordered conformers is of particular interest because these species are not amenable to classical high-resolution techniques. Such equilibrium intermediates can often be populated by exposure to mildly acidic pH. Hydroxyl radical (·OH) introduces oxidative modifications at solvent-accessible side chains, while buried sites are protected. ·OH can be generated by laser photolysis of H(2)O(2) (fast photochemical oxidation of proteins-FPOP). The resulting labeling pattern can be analyzed by MS. The characterization of partially disordered intermediates usually involves comparative measurements under different solvent conditions. It can be challenging to separate structurally induced labeling changes from pH-mediated "secondary" effects. The issue of secondary effects in FPOP has received little prior attention. We demonstrate that with a proper choice of conditions (e.g., in the absence of pH-dependent ·OH scavengers) such undesired phenomena can be almost completely eliminated. Using apomyoglobin as a model system, we map the structure of an intermediate that is formed at pH 4. This species retains a highly protected helix G that is surrounded by partially protected helices A, B, and H. Our results demonstrate the utility of FPOP for the structural characterization of equilibrium intermediates. The near absence of an intrinsic pH dependence represents an advantage compared to hydrogen/deuterium exchange MS.


Asunto(s)
Espectrometría de Masas , Mioglobina/química , Secuencia de Aminoácidos , Animales , Apoproteínas/química , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Estructura Secundaria de Proteína , Solventes/química , Coloración y Etiquetado
16.
Curr Opin Struct Biol ; 21(5): 634-40, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21703846

RESUMEN

Deciphering the mechanisms of protein folding remains a considerable challenge. In this review we discuss the application of pulsed oxidative labeling for tracking protein structural changes in a time-resolved fashion. Exposure to a microsecond OH pulse at selected time points during folding induces the oxidation of solvent-accessible side chains, whereas buried residues are protected. Oxidative modifications can be detected by mass spectrometry. Folding is associated with dramatic accessibility changes, and therefore this method can provide detailed mechanistic insights. Solvent accessibility patterns are complementary to H/D exchange investigations, which report on the extent of hydrogen bonding. This review highlights the application of pulsed OH labeling to soluble proteins as well as membrane proteins.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas de la Membrana/química , Conformación Proteica , Pliegue de Proteína , Bacteriorodopsinas/química , Enlace de Hidrógeno , Cinética , Técnicas de Sonda Molecular , Sondas Moleculares/química , Oxidación-Reducción , Solubilidad , Solventes/química , Factores de Tiempo
17.
J Mol Biol ; 409(4): 669-79, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21515281

RESUMEN

Considerable progress in deciphering the mechanisms of protein folding has been made. However, most work in this area has focused on single-chain systems, whereas the majority of proteins are oligomers. The spontaneous assembly of intact multi-subunit systems from disordered building blocks encompasses the formation of intramolecular as well as intermolecular contacts. Both types of interaction affect the solvent accessibility of individual protein segments. This work employs pulsed hydroxyl radical (·OH) labeling for tracking time-dependent accessibility changes during folding and assembly of the S100A11 homodimer. ·OH induces covalent modifications at exposed residues. Structural snapshots are obtained by combining ·OH labeling with rapid mixing and mass spectrometry. The free subunits are found to possess a partially non-native hydrophobic core that prevents subunit association during the initial stages of the reaction. Instead, the protein forms an early (10 ms) monomeric intermediate that exhibits reduced solvent accessibility in regions distant from helices I and IV, which constitute the dimerization interface. Subunit association is complete after 800 ms, although the protein retains significant disorder in helices II and III at this point. Subsequent consolidation of these elements leads to the native state. The experimental strategy used here could become a general tool for deciphering kinetic mechanisms of biomolecular self-assembly processes.


Asunto(s)
Espectrometría de Masas/métodos , Conformación Proteica , Pliegue de Proteína , Proteínas S100/química , Secuencia de Aminoácidos , Animales , Dimerización , Modelos Moleculares , Oxidación-Reducción , Conejos , Proteínas S100/genética
18.
Anal Chem ; 82(15): 6667-74, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20669999

RESUMEN

Laser-induced oxidative labeling of proteins provides insights into biomolecular structures and interactions. In these experiments, the hydroxyl radical ((*)OH) formed by photolysis of H(2)O(2) generates covalent modifications that are detectable by mass spectrometry. Under conditions where individual protein molecules are irradiated only once, the short (*)OH lifetime (approximately 1 micros) ensures that covalent modifications are formed before any oxidation-induced conformational changes take place. This feature implies that the method should be free of structural artifacts. It has been proposed that single-exposure conditions can be achieved by passing the solution through a capillary where successive laser pulses generate a string of irradiated flow segments that are well separated from one another. The current work explores the convection phenomena within the labeling capillary in more detail. The experiments are conducted at Reynolds numbers <<2000, resulting in laminar flow. The associated parabolic velocity profile causes a portion of each irradiated segment to remain in the labeling window during the subsequent laser pulse. Achieving a genuine single-exposure regime is, therefore, not possible. We estimate the fraction of labeled protein formed under laminar flow conditions, as well as the occurrence of multiple exposure events for any combination of experimental parameters (laser spot width, pulse frequency, and solution flow rate). A proper choice of these parameters provides extensive labeling, while keeping multiple exposure events at an acceptably low level. The theoretical framework developed here is supported by experimental data. Overall, this study reaffirms the feasibility of the use of flow devices for meaningful laser-induced oxidative labeling studies. At the same time, we provide a theoretical underpinning of this technique that goes beyond previously suggested plug flow models.


Asunto(s)
Rayos Láser , Espectrometría de Masas/métodos , Proteínas/química , Cromatografía Líquida de Alta Presión/métodos , Radical Hidroxilo/química , Espectrometría de Masas/instrumentación , Oxidación-Reducción , Estructura Terciaria de Proteína
19.
J Mol Biol ; 398(2): 362-73, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20230834

RESUMEN

The current work employs a novel approach for characterizing structural changes during the refolding of acid-denatured cytochrome c (cyt c). At various time points (ranging from 10 ms to 5 min) after a pH jump from 2 to 7, the protein is exposed to a microsecond hydroxyl radical (.OH) pulse that induces oxidative labeling of solvent-exposed side chains. Most of the covalent modifications appear as +16-Da adducts that are readily detectable by mass spectrometry. The overall extent of labeling decreases as folding proceeds, reflecting dramatic changes in the accessibility of numerous residues. Peptide mapping and tandem mass spectrometry reveal that the side chains of C14, C17, H33, F46, Y48, W59, M65, Y67, Y74, M80, I81, and Y97 are among the dominant sites of oxidation. Temporal changes in the accessibility of these residues are consistent with docking of the N- and C-terminal helices as early as 10 ms. However, structural reorganization at the helix interface takes place up to at least 1 s. Initial misligation of the heme iron by H33 leads to distal crowding, giving rise to low solvent accessibility of the displaced (native) M80 ligand and the adjacent I81. W59 retains a surprisingly high level of accessibility long into the folding process, indicating the presence of packing defects in the hydrophobically collapsed core. Overall, the results of this work are consistent with previous hydrogen/deuterium exchange studies that proposed a foldon-mediated mechanism. The structural data obtained by .OH labeling monitor the packing and burial of side chains, whereas hydrogen/deuterium exchange primarily monitors the formation of secondary structure elements. Hence, the two approaches yield complementary information. Considering the very short time scale of pulsed oxidative labeling, an extension of the approach used here to sub-millisecond folding studies should be feasible.


Asunto(s)
Citocromos c/química , Mapeo Peptídico/métodos , Espectrometría de Masas en Tándem/métodos , Técnicas de Sonda Molecular , Sondas Moleculares/química , Oxidación-Reducción , Pliegue de Proteína , Solventes
20.
Mass Spectrom Rev ; 29(4): 651-67, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19672951

RESUMEN

This review discusses various mass spectrometry (MS)-based approaches for exploring structural aspects of proteins in solution. Electrospray ionization (ESI)-MS, in particular, has found fascinating applications in this area. For example, when used in conjunction with solution-phase hydrogen/deuterium exchange (HDX), ESI-MS is a highly sensitive tool for probing conformational dynamics. The main focus of this article is a technique that is complementary to HDX, that is, the covalent labeling of proteins by hydroxyl radicals. The reactivity of individual amino acid side chains with *OH is strongly affected by their degree of solvent exposure. Thus, analysis of the oxidative labeling pattern by peptide mapping and tandem mass spectrometry provides detailed structural information. A convenient method for *OH production is the photolysis of H(2)O(2) by a pulsed UV laser, resulting in oxidative labeling on the microsecond time scale. Selected examples demonstrate the use of this technique for structural studies on membrane proteins, and the combination with rapid mixing devices for characterizing the properties of short-lived protein (un)folding intermediates.


Asunto(s)
Radical Hidroxilo , Espectrometría de Masas/métodos , Pliegue de Proteína , Proteínas/química , Aminoácidos/química , Bacteriorodopsinas/química , Dicroismo Circular , Deuterio , Hidrógeno , Radical Hidroxilo/química , Modelos Moleculares , Estructura Molecular , Mioglobina/química , Oxidación-Reducción , Unión Proteica , Proteínas/metabolismo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...